163 research outputs found

    Optimisation of the RT-PCR detection of immunomagnetically enriched carcinoma cells

    Get PDF
    BACKGROUND: Immunomagnetic enrichment followed by RT-PCR (immunobead RT-PCR) is an efficient methodology to identify disseminated carcinoma cells in the blood and bone marrow. The RT-PCR assays must be both specific for the tumor cells and sufficiently sensitive to enable detection of single tumor cells. We have developed a method to test RT-PCR assays for any cancer. This has been investigated using a panel of RT-PCR markers suitable for the detection of breast cancer cells. METHODS: In the assay, a single cell line-derived tumor cell is added to 100 peripheral blood mononuclear cells (PBMNCs) after which mRNA is isolated and reverse transcribed for RT-PCR analysis. PBMNCs without added tumor cells are used as specificity controls. The previously studied markers epidermal growth factor receptor (EGFR), mammaglobin 1 (MGB1), epithelial cell adhesion molecule (EpCAM/TACSTD1), mucin 1 (MUC1), carcinoembryonic antigen (CEA) were tested. Two new epithelial-specific markers ELF3 and EphB4 were also tested. RESULTS: MUC1 was unsuitable as strong amplification was detected in 100 cell PBMNC controls. Expression of ELF3, EphB4, EpCAM, EGFR, CEA and MGB1 was found to be both specific for the tumor cell, as demonstrated by the absence of a signal in most 100 cell PBMNC controls, and sensitive enough to detect a single tumor cell in 100 PBMNCs using a single round of RT-PCR. CONCLUSIONS: ELF3, EphB4, EpCAM, EGFR, CEA and MGB1 are appropriate RT-PCR markers for use in a marker panel to detect disseminated breast cancer cells after immunomagnetic enrichment

    Awareness of prostate cancer among patients and the general public: results of an international survey

    Get PDF
    The objective of this study was to assess the level of awareness of prostate cancer (PCa) among the general public and PCa patients in Europe and North America. A survey was undertaken across four European countries (UK, Germany, Italy and Spain), and across the United States and Canada in late 2007. In total, 1008 men with PCa and their partners (the ‘prostate sample'), and 911 men without PCa and their partners (the ‘well sample') participated in the survey, all aged ⩾50 years. Interviews were conducted through telephone, pen and paper, and online. Many people surveyed (53%) thought that breast cancer is more common than PCa. Moreover, 1 in 10 people from the well sample (10%) thought that PCa affects both men and women. When the prostate sample was asked about their perceived level of risk of PCa before diagnosis, 50% believed that they/their husband or partner were previously at low or very low risk, before they were diagnosed. Awareness of the major risk factors for PCa (age and family history) was generally good, but respondents were less clear about the role of other potential factors, such as smoking and drinking alcohol. This international survey, thought to be largest of its type, shows that although patient and public awareness of PCa is generally satisfactory, there is still a considerable lack of clarity about PCa risk factors, and a danger for people to underestimate their own/their partner's perceived risk for PCa. Programmes to responsibly educate and inform men and their partners about risk factors, prevalence and screening tools for PCa are required

    Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ionizing radiation-induced hematopoietic injury could occur either due to accidental exposure or due to diagnostic and therapeutic interventions. Currently there is no approved drug to mitigate radiation toxicity in hematopoietic cells. This study investigates the potential of ON 01210.Na, a chlorobenzylsulfone derivative, in ameliorating radiation-induced hematopoietic toxicity when administered after exposure to radiation. We also investigate the molecular mechanisms underlying this activity.</p> <p>Methods</p> <p>Male C3H/HeN mice (n = 5 mice per group; 6-8 weeks old) were exposed to a sub-lethal dose (5 Gy) of γ radiation using a <sup>137</sup>Cs source at a dose rate of 0.77 Gy/min. Two doses of ON 01210.Na (500 mg/kg body weight) were administered subcutaneously at 24 h and 36 h after radiation exposure. Mitigation of hematopoietic toxicity by ON 01210.Na was investigated by peripheral white blood cell (WBC) and platelet counts at 3, 7, 21, and 28 d after radiation exposure. Granulocyte macrophage colony forming unit (GM-CFU) assay was done using isolated bone marrow cells, and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) was performed on bone marrow sections at 7 d post-exposure. The DNA damage response pathway involving ataxia telangiectasia mutated (ATM) and p53 was investigated by Western blot in bone marrow cells at 7 d post-exposure.</p> <p>Results</p> <p>Compared to the vehicle, ON 01210.Na treated mice showed accelerated recovery of peripheral WBC and platelet counts. Post-irradiation treatment of mice with ON 01210.Na also resulted in higher GM-CFU counts. The mitigation effects were accompanied by attenuation of ATM-p53-dependent DNA damage response in the bone marrow cells of ON 01210.Na treated mice. Both phospho-ATM and phospho-p53 were significantly lower in the bone marrow cells of ON 01210.Na treated than in vehicle treated mice. Furthermore, the Bcl2:Bax ratio was higher in the drug treated mice than the vehicle treated groups.</p> <p>Conclusions</p> <p>ON 01210.Na treatment significantly mitigated the hematopoietic toxicity induced by a sub-lethal radiation dose. Mechanistically, attenuation of ATM-p53 mediated DNA damage response by ON 01210.Na is contributing to the mitigation of radiation-induced hematopoietic toxicity.</p

    Nitric oxide production by tumour tissue: impact on the response to photodynamic therapy

    Get PDF
    The role of nitric oxide (NO) in the response to Photofrin-based photodynamic therapy (PDT) was investigated using mouse tumour models characterized by either relatively high or low endogenous NO production (RIF and SCCVII vs EMT6 and FsaR, respectively). The NO synthase inhibitors Nω-nitro- L -arginine (L-NNA) or Nω-nitro- L -arginine methyl ester (L-NAME), administered to mice immediately after PDT light treatment of subcutaneously growing tumours, markedly enhanced the cure rate of RIF and SCCVII models, but produced no obvious benefit with the EMT6 and FsaR models. Laser Doppler flowmetry measurement revealed that both L-NNA and L-NAME strongly inhibit blood flow in RIF and SCCVII tumours, but not in EMT6 and FsaR tumours. When injected intravenously immediately after PDT light treatment, L-NAME dramatically augmented the decrease in blood flow in SCCVII tumours induced by PDT. The pattern of blood flow alterations in tumours following PDT indicates that, even with curative doses, regular circulation may be restored in some vessels after episodes of partial or complete obstruction. Such conditions are conducive to the induction of ischaemia-reperfusion injury, which is instigated by the formation of superoxide radical. The administration of superoxide dismutase immediately after PDT resulted in a decrease in tumour cure rates, thus confirming the involvement of superoxide in the anti-tumour effect. The results of this study demonstrate that NO participates in the events associated with PDT-mediated tumour destruction, particularly in the vascular response that is of critical importance for the curative outcome of this therapy. The level of endogenous production of NO in tumours appears to be one of the determinants of sensitivity to PDT. © 2000 Cancer Research Campaig

    Hysteresis in a quantized, superfluid atomtronic circuit

    Full text link
    Atomtronics is an emerging interdisciplinary field that seeks new functionality by creating devices and circuits where ultra-cold atoms, often superfluids, play a role analogous to the electrons in electronics. Hysteresis is widely used in electronic circuits, e.g., it is routinely observed in superconducting circuits and is essential in rf-superconducting quantum interference devices [SQUIDs]. Furthermore, hysteresis is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity, and Josephson effects. Nevertheless, in spite of multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate (BEC). Here we demonstrate hysteresis in a quantized atomtronic circuit: a ring of superfluid BEC obstructed by a rotating weak link. We directly detect hysteresis between quantized circulation states, in contrast to superfluid liquid helium experiments that observed hysteresis directly in systems where the quantization of flow could not be observed and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices and indicate that dissipation plays an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits like memory, digital noise filters (e.g., Schmitt triggers), and magnetometers (e.g., SQUIDs).Comment: 20 pages, 4 figure

    Assessment of potential effects of the electromagnetic fields of mobile phones on hearing

    Get PDF
    BACKGROUND: Mobile phones have become indispensable as communication tools; however, to date there is only a limited knowledge about interaction between electromagnetic fields (EMF) emitted by mobile phones and auditory function. The aim of the study was to assess potential changes in hearing function as a consequence of exposure to low-intensity EMF's produced by mobile phones at frequencies of 900 and 1800 MHz. METHODS: The within-subject study was performed on thirty volunteers (age 18–30 years) with normal hearing to assess possible acute effect of EMF. Participants attended two sessions: genuine and sham exposure of EMF. Hearing threshold levels (HTL) on pure tone audiometry (PTA) and transient evoked otoacoustic emissions (TEOAE's) were recorded before and immediately after 10 min of genuine and/or sham exposure of mobile phone EMF. The administration of genuine or sham exposure was double blind and counterbalanced in order. RESULTS: Statistical analysis revealed no significant differences in the mean HTLs of PTA and mean shifts of TEOAE's before and after genuine and/or sham mobile phone EMF 10 min exposure. The data collected showed that average TEOAE levels (averaged across a frequency range) changed less than 2.5 dB between pre- and post-, genuine and sham exposure. The greatest individual change was 10 dB, with a decrease in level from pre- to post- real exposure. CONCLUSION: It could be concluded that a 10-min close exposure of EMFs emitted from a mobile phone had no immediate after-effect on measurements of HTL of PTA and TEOAEs in young human subjects and no measurable hearing deterioration was detected in our study

    Adaptive Response in Mice Exposed to 900 MHz Radiofrequency Fields: Primary DNA Damage

    Get PDF
    The phenomenon of adaptive response (AR) in animal and human cells exposed to ionizing radiation is well documented in scientific literature. We have examined whether such AR could be induced in mice exposed to non-ionizing radiofrequency fields (RF) used for wireless communications. Mice were pre-exposed to 900 MHz RF at 120 µW/cm2 power density for 4 hours/day for 1, 3, 5, 7 and 14 days and then subjected to an acute dose of 3 Gy γ-radiation. The primary DNA damage in the form of alkali labile base damage and single strand breaks in the DNA of peripheral blood leukocytes was determined using the alkaline comet assay. The results indicated that the extent of damage in mice which were pre-exposed to RF for 1 day and then subjected to γ-radiation was similar and not significantly different from those exposed to γ-radiation alone. However, mice which were pre-exposed to RF for 3, 5, 7 and 14 days showed progressively decreased damage and was significantly different from those exposed to γ-radiation alone. Thus, the data indicated that RF pre-exposure is capable of inducing AR and suggested that the pre-exposure for more than 4 hours for 1 day is necessary to elicit such AR

    Use of an orthovoltage X-ray treatment unit as a radiation research system in a small-animal cancer model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We explore the use of a clinical orthovoltage X-ray treatment unit as a small-animal radiation therapy system in a tumoral model of cervical cancer.</p> <p>Methods</p> <p>Nude mice were subcutaneously inoculated with 5 × 10<sup>6 </sup>HeLa cells in both lower limbs. When tumor volume approximated 200 mm<sup>3 </sup>treatment was initiated. Animals received four 2 mg/kg intraperitoneal cycles (1/week) of cisplatin and/or 6.25 mg/kg of gemcitabine, concomitant with radiotherapy. Tumors were exposed to 2.5 Gy/day nominal surface doses (20 days) of 150 kV X-rays. Lead collimators with circular apertures (0.5 to 1.5 cm diameter) were manufactured and mounted on the applicator cone to restrict the X-ray beam onto tumors. X-ray penetration and conformality were evaluated by measuring dose at the surface and behind the tumor lobe by using HS GafChromic film. Relative changes in tumor volume (RTV) and a clonogenic assay were used to evaluate the therapeutic response of the tumor, and relative weight loss was used to assess toxicity of the treatments.</p> <p>Results</p> <p>No measurable dose was delivered outside of the collimator apertures. The analysis suggests that dose inhomogeneities in the tumor reach up to ± 11.5% around the mean tumor dose value, which was estimated as 2.2 Gy/day. Evaluation of the RTV showed a significant reduction of the tumor volume as consequence of the chemoradiotherapy treatment; results also show that toxicity was well tolerated by the animals.</p> <p>Conclusion</p> <p>Results and procedures described in the present work have shown the usefulness and convenience of the orthovoltage X-ray system for animal model radiotherapy protocols.</p

    Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Get PDF
    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed
    corecore