34 research outputs found

    Mating alters gene expression patterns in Drosophila melanogaster male heads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Behavior is a complex process resulting from the integration of genetic and environmental information. <it>Drosophila melanogaster </it>rely on multiple sensory modalities for reproductive success, and mating causes physiological changes in both sexes that affect reproductive output or behavior. Some of these effects are likely mediated by changes in gene expression. Courtship and mating alter female transcript profiles, but it is not known how mating affects male gene expression.</p> <p>Results</p> <p>We used <it>Drosophila </it>genome arrays to identify changes in gene expression profiles that occur in mated male heads. Forty-seven genes differed between mated and control heads 2 hrs post mating. Many mating-responsive genes are highly expressed in non-neural head tissues, including an adipose tissue called the fat body. One fat body-enriched gene, <it>female-specific independent of transformer </it>(<it>fit</it>), is a downstream target of the somatic sex-determination hierarchy, a genetic pathway that regulates <it>Drosophila</it> reproductive behaviors as well as expression of some fat-expressed genes; three other mating-responsive loci are also downstream components of this pathway. Another mating-responsive gene expressed in fat, <it>Juvenile hormone esterase </it>(<it>Jhe</it>), is necessary for robust male courtship behavior and mating success.</p> <p>Conclusions</p> <p>Our study demonstrates that mating causes changes in male head gene expression profiles and supports an increasing body of work implicating adipose signaling in behavior modulation. Since several mating-induced genes are sex-determination hierarchy target genes, additional mating-responsive loci may be downstream components of this pathway as well.</p

    A Recombinant Secondary Antibody Mimic as a Target-specific Signal Amplifier and an Antibody Immobilizer in Immunoassays

    Get PDF
    We construct a novel recombinant secondary antibody mimic, GST-ABD, which can bind to the Fc regions of target-bound primary antibodies and acquire multiple HRPs simultaneously. We produce it in tenth of mg quantities with a bacterial overexpression system and simple purification procedures, significantly reducing the manufacturing cost and time without the use of animals. GST-ABD is effectively conjugated with 3 HRPs per molecule on an average and selectively bind to the Fc region of primary antibodies derived from three different species (mouse, rabbit, and rat). HRP-conjugated GST-ABD (HRP-GST-ABD) is successfully used as an alternative to secondary antibodies to amplify target-specific signals in both ELISA and immunohistochemistry regardless of the target molecules and origin of primary antibodies used. GST-ABD also successfully serves as an anchoring adaptor on the surface of GSH-coated plates for immobilizing antigen-capturing antibodies in an orientation-controlled manner for sandwich-type indirect ELISA through simple molecular recognition without any complicated chemical modification.clos

    Insulin Signaling, Lifespan and Stress Resistance Are Modulated by Metabotropic GABA Receptors on Insulin Producing Cells in the Brain of Drosophila

    Get PDF
    Insulin-like peptides (ILPs) regulate growth, reproduction, metabolic homeostasis, life span and stress resistance in worms, flies and mammals. A set of insulin producing cells (IPCs) in the Drosophila brain that express three ILPs (DILP2, 3 and 5) have been the main focus of interest in hormonal DILP signaling. Little is, however, known about factors that regulate DILP production and release by these IPCs. Here we show that the IPCs express the metabotropic GABAB receptor (GBR), but not the ionotropic GABAA receptor subunit RDL. Diminishing the GBR expression on these cells by targeted RNA interference abbreviates life span, decreases metabolic stress resistance and alters carbohydrate and lipid metabolism at stress, but not growth in Drosophila. A direct effect of diminishing GBR on IPCs is an increase in DILP immunofluorescence in these cells, an effect that is accentuated at starvation. Knockdown of irk3, possibly part of a G protein-activated inwardly rectifying K+ channel that may link to GBRs, phenocopies GBR knockdown in starvation experiments. Our experiments suggest that the GBR is involved in inhibitory control of DILP production and release in adult flies at metabolic stress and that this receptor mediates a GABA signal from brain interneurons that may convey nutritional signals. This is the first demonstration of a neurotransmitter that inhibits insulin signaling in its regulation of metabolism, stress and life span in an invertebrate brain
    corecore