2,806 research outputs found
Experiments on Multidimensional Solitons
This article presents an overview of experimental efforts in recent years
related to multidimensional solitons in Bose-Einstein condensates. We discuss
the techniques used to generate and observe multidimensional nonlinear waves in
Bose-Einstein condensates with repulsive interactions. We further summarize
observations of planar soliton fronts undergoing the snake instability, the
formation of vortex rings, and the emergence of hybrid structures.Comment: review paper, to appear as Chapter 5b in "Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P.
G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez
(Springer-Verlag
Skyrmions in a ferromagnetic Bose-Einstein condensate
The recently realized multicomponent Bose-Einstein condensates provide
opportunities to explore the rich physics brought about by the spin degrees of
freedom. For instance, we can study spin waves and phase separation,
macroscopic quantum tunneling, Rabi oscillations, the coupling between spin
gradients and superfluid flow, squeezed spin states, vortices and other
topological excitations. Theoretically, there have been already some studies of
the ground-state properties of these systems and their line-like vortex
excitations. In analogy with nuclear physics or the quantum Hall effect, we
explore here the possibility of observing point-like topological excitations or
skyrmions. These are nontrivial spin textures that in principle can exist in a
spinor Bose-Einstein condensate. In particular, we investigate the stability of
skyrmions in a fictitious spin-1/2 condensate of Rb87 atoms. We find that
skyrmions can exist in this case only as a metastable state, but with a
lifetime of the order of, or even longer than, the typical lifetime of the
condensate itself. In addition to determining the size and the lifetime of the
skyrmion, we also present its spin texture and finally briefly consider its
dynamical properties.Comment: 4 pages (REVtex), 3 PDF figures. See also cond-mat/000237
An update on cardiac implantable electronic devices for the general physician
Cardiac electronic device implantation is a common and important intervention for patients with tachy- and bradyarrhythmia. An increasing number of patients are receiving more complex devices such as cardiac resynchronisation therapy or devices with a defibrillation function. Over the last 5 years, two new models of cardiac device have emerged, subcutaneous defibrillators and leadless pacemakers. With an ageing population and data demonstrating 2000 per 100,000 of the population aged over 75 years have a cardiac device, it is essential that the general physician remains updated on the common pacemaker indications and available therapies
Relationships of brain cholesterol and cholesterol biosynthetic enzymes to Alzheimer’s pathology and dementia in the CFAS population-derived neuropathology cohort
Altered cholesterol metabolism is implicated in brain ageing and Alzheimer’s disease. We examined whether key genes regulating cholesterol metabolism and levels of brain cholesterol are altered in dementia and Alzheimer’s disease neuropathological change (ADNC). Temporal cortex (n = 99) was obtained from the Cognitive Function and Ageing Study. Expression of the cholesterol biosynthesis rate-limiting enzyme HMG-CoA reductase (HMGCR) and its regulator, SREBP2, were detected using immunohistochemistry. Expression of HMGCR, SREBP2, CYP46A1 and ABCA1 were quantified by qPCR in samples enriched for astrocyte and neuronal RNA following laser-capture microdissection. Total cortical cholesterol was measured using the Amplex Red assay. HMGCR and SREBP2 proteins were predominantly expressed in pyramidal neurones, and in glia. Neuronal HMGCR did not vary with ADNC, oxidative stress, neuroinflammation or dementia status. Expression of HMGCR neuronal mRNA decreased with ADNC (p = 0.022) and increased with neuronal DNA damage (p = 0.049), whilst SREBP2 increased with ADNC (p = 0.005). High or moderate tertiles for cholesterol levels were associated with increased dementia risk (OR 1.44, 1.58). APOE ε4 allele was not associated with cortical cholesterol levels. ADNC is associated with gene expression changes that may impair cholesterol biosynthesis in neurones but not astrocytes, whilst levels of cortical cholesterol show a weak relationship to dementia status
Study protocol for development and validation of a single tool to assess risks of stroke, diabetes mellitus, myocardial infarction and dementia: DemNCD-Risk
Introduction Current efforts to reduce dementia focus on prevention and risk reduction by targeting modifiable risk factors. As dementia and cardiometabolic non-communicable diseases (NCDs) share risk factors, a single risk-estimating tool for dementia and multiple NCDs could be cost-effective and facilitate concurrent assessments as compared with a conventional single approach. The aim of this study is to develop and validate a new risk tool that estimates an individual's risk of developing dementia and other NCDs including diabetes mellitus, stroke and myocardial infarction. Once validated, it could be used by the public and general practitioners. Methods and analysis Ten high-quality cohort studies from multiple countries were identified, which met eligibility criteria, including large representative samples, long-term follow-up, data on clinical diagnoses of dementia and NCDs, recognised modifiable risk factors for the four NCDs and mortality data. Pooled harmonised data from the cohorts will be used, with 65% randomly allocated for development of the predictive model and 35% for testing. Predictors include sociodemographic characteristics, general health risk factors and lifestyle/behavioural risk factors. A subdistribution hazard model will assess the risk factors' contribution to the outcome, adjusting for competing mortality risks. Point-based scoring algorithms will be built using predictor weights, internally validated and the discriminative ability and calibration of the model will be assessed for the outcomes. Sensitivity analyses will include recalculating risk scores using logistic regression. Ethics and dissemination Ethics approval is provided by the University of New South Wales Human Research Ethics Committee (UNSW HREC; protocol numbers HC200515, HC3413). All data are deidentified and securely stored on servers at Neuroscience Research Australia. Study findings will be presented at conferences and published in peer-reviewed journals. The tool will be accessible as a public health resource. Knowledge translation and implementation work will explore strategies to apply the tool in clinical practice
On-chip manipulation of single photons from a diamond defect
Operating reconfigurable quantum circuits with single photon sources is a key goal of photonic quantum information science and technology. We use an integrated waveguide device containing directional couplers and a reconfigurable thermal phase controller to manipulate single photons emitted from a chromium related color center in diamond. Observation of both a wavelike interference pattern and particlelike sub-Poissionian autocorrelation functions demonstrates coherent manipulation of single photons emitted from the chromium related center and verifies wave particle duality. © 2013 American Physical Society
A highly efficient method for the production and purification of recombinant human CXCL8
Chemokines play diverse and fundamental roles in the immune system and human disease, which has prompted their structural and functional characterisation. Production of recombinant chemokines that are folded and bioactive is vital to their study but is limited by the stringent requirements of a native N-terminus for receptor activation and correct disulphide bonding required to stabilise the chemokine fold. Even when expressed as fusion proteins, overexpression of chemokines in E. coli tends to result in the formation of inclusion bodies, generating the additional steps of solubilisation and refolding. Here we present a novel method for producing soluble chemokines in relatively large amounts via a simple two-step purification procedure with no requirements for refolding. CXCL8 produced by this method has the correct chemokine fold as determined by NMR spectroscopy and in chemotaxis assays was indistinguishable from commercially available chemokines. We believe that this protocol significantly streamlines the generation of recombinant chemokines
From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions
©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein
Human Female Genital Tract Infection by the Obligate Intracellular Bacterium Chlamydia trachomatis Elicits Robust Type 2 Immunity
While Chlamydia trachomatis infections are frequently asymptomatic, mechanisms that regulate host response to this intracellular Gram-negative bacterium remain undefined. This investigation thus used peripheral blood mononuclear cells and endometrial tissue from women with or without Chlamydia genital tract infection to better define this response. Initial genome-wide microarray analysis revealed highly elevated expression of matrix metalloproteinase 10 and other molecules characteristic of Type 2 immunity (e.g., fibrosis and wound repair) in Chlamydia-infected tissue. This result was corroborated in flow cytometry and immunohistochemistry studies that showed extant upper genital tract Chlamydia infection was associated with increased co-expression of CD200 receptor and CD206 (markers of alternative macrophage activation) by endometrial macrophages as well as increased expression of GATA-3 (the transcription factor regulating TH2 differentiation) by endometrial CD4+ T cells. Also among women with genital tract Chlamydia infection, peripheral CD3+ CD4+ and CD3+ CD4- cells that proliferated in response to ex vivo stimulation with inactivated chlamydial antigen secreted significantly more interleukin (IL)-4 than tumor necrosis factor, interferon-γ, or IL-17; findings that repeated in T cells isolated from these same women 1 and 4 months after infection had been eradicated. Our results thus newly reveal that genital infection by an obligate intracellular bacterium induces polarization towards Type 2 immunity, including Chlamydia-specific TH2 development. Based on these findings, we now speculate that Type 2 immunity was selected by evolution as the host response to C. trachomatis in the human female genital tract to control infection and minimize immunopathological damage to vital reproductive structures. © 2013 Vicetti Miguel et al
The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the cross-sectional NHANES study
BACKGROUND: Sedentary behaviours, defined as non exercising seated activities, have been shown to have deleterious effects on health. It has been hypothesised that too much sitting time can have a detrimental effect on bone health in youth. The aim of this study is to test this hypothesis by exploring the association between objectively measured volume and patterns of time spent in sedentary behaviours, time spent in specific screen-based sedentary pursuits and bone mineral content (BMC) accrual in youth. METHODS: NHANES 2005–2006 cycle data includes BMC of the femoral and spinal region via dual-energy X-ray absorptiometry (DEXA), assessment of physical activity and sedentary behaviour patterns through accelerometry, self reported time spent in screen based pursuits (watching TV and using a computer), and frequency of vigorous playtime and strengthening activities. Multiple regression analysis, stratified by gender was performed on N = 671 males and N = 677 females aged from 8 to 22 years. RESULTS: Time spent in screen-based sedentary behaviours is negatively associated with femoral BMC (males and females) and spinal BMC (females only) after correction for time spent in moderate and vigorous activity. Regression coefficients indicate that an additional hour per day of screen-based sitting corresponds to a difference of −0.77 g femoral BMC in females [95% CI: -1.31 to −0.22] and of −0.45 g femoral BMC in males [95% CI: -0.83 to −0.06]. This association is attenuated when self-reported engagement in regular (average 5 times per week) strengthening exercise (for males) and vigorous playing (for both males and females) is taken into account. Total sitting time and non screen-based sitting do not appear to have a negative association with BMC, whereas screen based sedentary time does. Patterns of intermittence between periods of sitting and moderate to vigorous activity appears to be positively associated with bone health when activity is clustered in time and inter-spaced with long continuous bouts of sitting. CONCLUSIONS: Some specific sedentary pursuits (screen-based) are negatively associated with bone health in youth. This association is specific to gender and anatomical area. This relationship between screen-based time and bone health is independent of the total amount of physical activity measured objectively, but not independent of self-reported frequency of strengthening and vigorous play activities. The data clearly suggests that the frequency, rather than the volume, of osteogenic activities is important in counteracting the effect of sedentary behaviour on bone health. The pattern of intermittence between sedentary periods and activity also plays a role in bone accrual, with clustered short bouts of activity interspaced with long periods of sedentary behaviours appearing to be more beneficial than activities more evenly spread in time
- …