31 research outputs found

    Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation

    Get PDF
    About a quarter of pre-menopausal women will suffer from heavy menstrual bleeding in their lives. Here, Maybin and colleagues show hypoxia and subsequent activation of HIF-1α during menses are required for normal endometrial repair, and identify pharmacological stabilisation of HIF-1α as a potential therapeutic strategy for this debilitating condition

    Dilated Thin-Walled Blood and Lymphatic Vessels in Human Endometrium: A Potential Role for VEGF-D in Progestin-Induced Break-Through Bleeding

    Get PDF
    Progestins provide safe, effective and cheap options for contraception as well as the treatment of a variety of gynaecological disorders. Episodes of irregular endometrial bleeding or breakthrough bleeding (BTB) are a major unwanted side effect of progestin treatment, such that BTB is the leading cause for discontinued use of an otherwise effective and popular medication. The cellular mechanisms leading to BTB are poorly understood. In this study, we make the novel finding that the large, dilated, thin walled vessels characteristic of human progestin-treated endometrium include both blood and lymphatic vessels. Increased blood and lymphatic vessel diameter are features of VEGF-D action in other tissues and we show by immunolocalisation and Western blotting that stromal cell decidualisation results in a significant increase in VEGF-D protein production, particularly of the proteolytically processed 21 kD form. Using a NOD/scid mouse model with xenografted human endometrium we were able to show that progestin treatment causes decidualisation, VEGF-D production and endometrial vessel dilation. Our results lead to a novel hypothesis to explain BTB, with stromal cell decidualisation rather than progestin treatment per se being the proposed causative event, and VEGF-D being the proposed effector agent

    Hypoxyprobe™ reveals dynamic spatial and temporal changes in hypoxia in a mouse model of endometrial breakdown and repair

    Get PDF
    BACKGROUND: Menstruation is the culmination of a cascade of events, triggered by the withdrawal of progesterone at the end of the menstrual cycle. Initiation of tissue destruction and endometrial shedding causes spiral arteriole constriction in the functional layer of the endometrium. Upregulation of genes involved in angiogenesis and immune cell recruitment, two processes that are essential to successful repair and remodelling of the endometrium, both thought to be induced by reduced oxygen has been reported. Evidence for stabilisation/increased expression of the transcriptional regulator hypoxia inducible factor in the human endometrium at menses has been published. The current literature debates whether hypoxia plays an essential role during menstrual repair, therefore this study aims to delineate a role for hypoxia using a sensitive detection method (the Hypoxyprobe™) in combination with an established mouse model of endometrial breakdown and repair. RESULTS: Using our mouse model of menses, during which documented breakdown and synchronous repair occurs in a 24 h timeframe, in combination with the Hypoxyprobe™ detection system, oxygen tensions within the uterus were measured. Immunostaining revealed striking spatial and temporal fluctuations in hypoxia during breakdown and showed that the epithelium is also exposed to hypoxic conditions during the repair phase. Furthermore, time-dependent changes in tissue hypoxia correlated with the regulation of mRNAs encoding for the angiogenic genes vascular endothelial growth factor and stromal derived factor (Cxcl12). CONCLUSIONS: Our findings are consistent with a role for focal hypoxia during endometrial breakdown in regulating gene expression during menses. These data have implications for treatment of endometrial pathologies such as heavy menstrual bleeding

    Regulation of human endometrial function: mechanisms relevant to uterine bleeding

    Get PDF
    This review focuses on the complex events that occur in the endometrium after progesterone is withdrawn (or blocked) and menstrual bleeding ensues. A detailed understanding of these local mechanisms will enhance our knowledge of disturbed endometrial/uterine function – including problems with excessively heavy menstrual bleeding, endometriosis and breakthrough bleeding with progestin only contraception. The development of novel strategies to manage these clinically significant problems depends on such new understanding as does the development of new contraceptives which avoid the endometrial side effect of breakthrough bleeding

    Reassessing the Clinical Significance of Chorionic Membrane Microcysts and Linear Necrosis

    No full text

    Endometrial Bleeding and Hormone Replacement Therapy

    No full text
    corecore