82 research outputs found

    Transitional Probability-Based Model for HPV Clearance in HIV-1-Positive Adolescent Females

    Get PDF
    BACKGROUND: HIV-1-positive patients clear the human papillomavirus (HPV) infection less frequently than HIV-1-negative. Datasets for estimating HPV clearance probability often have irregular measurements of HPV status and risk factors. A new transitional probability-based model for estimation of probability of HPV clearance was developed to fully incorporate information on HIV-1-related clinical data, such as CD4 counts, HIV-1 viral load (VL), highly active antiretroviral therapy (HAART), and risk factors (measured quarterly), and HPV infection status (measured at 6-month intervals). METHODOLOGY AND FINDINGS: Data from 266 HIV-1-positive and 134 at-risk HIV-1-negative adolescent females from the Reaching for Excellence in Adolescent Care and Health (REACH) cohort were used in this study. First, the associations were evaluated using the Cox proportional hazard model, and the variables that demonstrated significant effects on HPV clearance were included in transitional probability models. The new model established the efficacy of CD4 cell counts as a main clearance predictor for all type-specific HPV phylogenetic groups. The 3-month probability of HPV clearance in HIV-1-infected patients significantly increased with increasing CD4 counts for HPV16/16-like (p<0.001), HPV18/18-like (p<0.001), HPV56/56-like (p = 0.05), and low-risk HPV (p<0.001) phylogenetic groups, with the lowest probability found for HPV16/16-like infections (21.60±1.81% at CD4 level 200 cells/mm(3), p<0.05; and 28.03±1.47% at CD4 level 500 cells/mm(3)). HIV-1 VL was a significant predictor for clearance of low-risk HPV infections (p<0.05). HAART (with protease inhibitor) was significant predictor of probability of HPV16 clearance (p<0.05). HPV16/16-like and HPV18/18-like groups showed heterogeneity (p<0.05) in terms of how CD4 counts, HIV VL, and HAART affected probability of clearance of each HPV infection. CONCLUSIONS: This new model predicts the 3-month probability of HPV infection clearance based on CD4 cell counts and other HIV-1-related clinical measurements

    Serotonin transporter binding of [123I]ADAM in bulimic women, their healthy twin sisters, and healthy women: a SPET study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bulimia Nervosa (BN) is believed to be caused by an interaction of genetic and environmental factors. Previous studies support the existence of a bulimia-related endophenotype as well as disturbances in serotonin (5-HT) transmission. We studied serotonin transporter (SERT) binding in BN, and to investigate the possibility of a SERT-related endophenotype for BN, did this in a sample of female twins. We hypothesized clearly reduced SERT binding in BN women as opposed to healthy women, and intermediate SERT binding in unaffected co-twins.</p> <p>Methods</p> <p>We studied 13 female twins with BN (9 with purging and 4 with non-purging BN) and 25 healthy women, including 6 healthy twin sisters of BN patients and 19 women from 10 healthy twin pairs. [<sup>123</sup>I]ADAM, a selective SERT radioligand for single photon emission tomography (SPET) imaging, was used to assess SERT availability in the midbrain and the thalamus.</p> <p>Results</p> <p>No differences in SERT binding were evident when comparing the BN women, their unaffected co-twins and the healthy controls (p = 0.14). The healthy sisters of the BN patients and the healthy control women had similar SERT binding in both brain regions. In a <it>post hoc </it>subgroup analysis, the purging bulimics had higher SERT binding than the healthy women in the midbrain (p = 0.03), but not in the thalamus.</p> <p>Conclusion</p> <p>Our finding of increased SERT binding in the midbrain in the purging BN women raises the possibility that this subgroup of bulimics might differ in serotonergic function from the non-purging ones. The similarity of the unaffected co-twins and the healthy controls doesn't support our initial assumption of a SERT-related endophenotype for BN. Due to the small sample size, our results need to be interpreted with caution and verified in a larger sample.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    Get PDF
    Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 x10(-8)), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD
    • 

    corecore