17 research outputs found

    Reaction Kinetics Analysis of Chemical Changes in Pressure-Assisted Thermal Processing

    No full text
    Pressure-assisted thermal processing (PATP) at T 100°C can be used when bacterial spores inactivation is necessary. In PATP, the adiabatic compression/decompression heat increases/decreases temperature almost instantaneously, and the simultaneous application of high pressure (~600–700 MPa) and temperature (~100–120°C) accelerates spore inactivation. PATP effects on chemical changes are analyzed using a reaction kinetics approach including activation volume (V a) and activation energy (E a) values. Reaction rates increase or decrease with pressure for negative or positive V a values, respectively, while rate temperature and pressure sensitivity depends on the magnitude of E a and V a values, respectively. The complex effects of food matrix, pH, dissolved oxygen, and presence of antioxidants show that optimization of vitamin, pigment and flavor retention while ensuring PATP microbial and enzyme inactivation will require substantially more chemical reaction kinetics research

    Age and depositional environment of the Draa Sfar massive sulfide deposit, Morocco

    No full text
    The Draa Sfar mineralization consists of two main stratabound orebodies, Sidi M’Barek and Tazacourt, located north and south of the Tensift River (“Oued Tessift”), respectively. Each orebody is comprised by at least two massive sulfide lenses. The hosting rocks are predominantly black shales, although minor rhyolitic rocks are also present in the footwall to the southern orebody. Shales, rhyolitic volcanic rocks, and massive sulfides are all included into the Sarhlef Series, which is recognized as one of the main stratigraphic units of the Moroccan Variscan Meseta. Hydrothermal activity related with an anomalous thermal gradient, together with a high sedimentation rate in a tectonically driven pull-apart marine basin, favored the accumulation of organic-rich mud in the deepest parts of the basin and the sedimentary environment suitable for massive sulfide deposition and preservation. This took place by replacement of the hosting unlithified wet mud below the sediment–water interface. Geochemical data suggest a sedimentary environment characterized by oxic water column and anoxic sediment pile with the redox boundary below the sediment–water interface. The low oxygen availability within the sediment pile inhibited oxidation and pyritization of pyrrhotite. Biostratigraphic analysis, based on the palynological content of the hosting black shales, restricts the age of the sulfides to the Asbian substage (mid-Mississippian). This age is consistent with earlier geochronological constraints
    corecore