19 research outputs found

    A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice

    Get PDF
    Both clinical and preclinical studies demonstrate the antidepressant activity of the functional NMDA receptor antagonists. In this study, we assessed the effects of two glycine/NMDA receptor ligands, namely L-701,324 (antagonist) and d-cycloserine (a partial agonist) on the action of antidepressant drugs with different pharmacological profiles in the forced swim test in mice. Swim sessions were conducted by placing mice individually in glass cylinders filled with warmed water for 6 min. The duration of behavioral immobility during the last 4 min of the test was evaluated. The locomotor activity of mice was measured with photoresistor actimeters. L-701,324 and d-cycloserine given with reboxetine (administered in subeffective doses) did not change the behavior of animals in the forced swim test. A potentiating effect was seen when both tested glycine site ligands were given concomitantly with imipramine or fluoxetine in this test. The lesion of noradrenaline nerve terminals produced by DSP-4 neither altered the baseline activity nor influenced the antidepressant-like action of L-701,324 or d-cycloserine. The depletion of serotonin by p-CPA did not alter baseline activity in the forced swim test. However, it completely antagonized the antidepressant-like action produced by L-701,324 and d-cycloserine. Moreover, the antidepressant-like effects of imipramine, fluoxetine and reboxetine were abolished by d-serine, a full agonist of glycine/NMDA receptors. The present study demonstrates that glycine/NMDA receptor functional antagonists enhance the antidepressant-like action of serotonin, but not noradrenaline-based antidepressants and such their activity seems to depend on serotonin rather than noradrenaline pathway

    Anticonvulsant potencies of the enantiomers of the neurosteroids androsterone and etiocholanolone exceed those of the natural forms

    No full text
    RATIONALE: Androsterone [(3α,5α)-3-hydroxyandrostan-17-one; 5α,3α-A] and its 5β-epimer etiocholanolone [(3α,5β)-3-hydroxyandrostan-17-one; 5β,3α-A)], the major excreted metabolites of testosterone, are neurosteroid positive modulators of GABA(A) receptors. Such neurosteroids typically show enantioselectivity in which the natural form is more potent than the corresponding unnatural enantiomer. For 5α,3α-A and 5β,3α-A, the unnatural enantiomers are more potent at GABA(A) receptors than the natural forms. OBJECTIVES: The aim of this study was to compare the anticonvulsant potencies and time courses of 5α,3α-A and 5β,3α-A with their enantiomers in mouse seizure models. METHODS: Steroids were administered intraperitoneally to male NIH Swiss mice 15 min (or up to 6 h in time course experiments) prior to administration of an electrical stimulus in the 6-Hz or maximal electroshock (MES) seizure tests or the convulsant pentylenetetrazol (PTZ). RESULTS: In the 6-Hz test, the ED(50) values of ent-5α,3α-A was 5.0 mg/kg whereas the value for 5α,3α-A was 12.1 mg/kg; the corresponding values in the PTZ seizure test were 22.8 and 51.8 mg/kg. Neurosteroid GABA(A) receptor positive allosteric modulators are generally weak in the MES test and this was confirmed in the present study. However, the atypical relative potency relationship was maintained with ED(50) values of 140 and 223 mg/kg for ent-5α,3α- A and 5α,3α-A, respectively. Similar relationships were obtained for the 5β-isomers, except that the enantioselectivity was accentuated. In the 6-Hz and PTZ tests, the ED(50) values of ent-5β,3α-A were 11.8 and 20.4 mg/kg whereas the values for 5β,3α-A were 57.6 and 109.1 mg/kg. Protective activity in the 6-Hz test of ent-5α,3α-A persisted for somewhat longer (~5 h) than for 5α,3α-A (~4 h); protection by ent-5β,3α-A also persisted longer (~3 h) than for 5β,3α-A (~2 h). CONCLUSIONS: The unnatural enantiomers of 17-keto androgen class neurosteroids have greater in vivo potency and a longer duration of action than their natural counterparts. The more prolonged duration of action of the unnatural enantiomers could reflect reduced susceptibility to metabolism. Unnatural enantiomers of androgen class neurosteroids could have therapeutic utility and may provide advantages over the corresponding natural isomers due to enhanced potency and improved pharmacokinetic characteristics
    corecore