66 research outputs found

    Long term expansion profile of mesenchymal stromal cells at protein nanosheet-stabilised bioemulsions for next generation cell culture microcarriers.

    Get PDF
    Tremendous progress in the identification, isolation and expansion of stem cells has allowed their application in regenerative medicine and tissue engineering, and their use as advanced in vitro models. As a result, stem cell manufacturing increasingly requires scale up, parallelisation and automation. However, solid substrates currently used for the culture of adherent cells are poorly adapted for such applications, owing to their difficult processing from cell products, relatively high costs and their typical reliance on difficult to recycle plastics and microplastics. In this work, we show that bioemulsions formed of microdroplets stabilised by protein nanosheets displaying strong interfacial mechanics are well-suited for the scale up of adherent stem cells such as mesenchymal stromal cells (MSCs). We demonstrate that, over multiple passages (up to passage 10), MSCs retain comparable phenotypes when cultured on such bioemulsions, solid microcarriers (Synthemax II) and classic 2D tissue culture polystyrene. Phenotyping (cell proliferation, morphometry, flow cytometry and differentiation assays) of MSCs cultured for multiple passages on these systems indicate that, although stemness is lost at late passages when cultured on these different substrates, stem cell phenotypes remained comparable between different culture conditions, at any given passage. Hence our study validates the use of bioemulsions for the long term expansion of adherent stem cells and paves the way to the design of novel 3D bioreactors based on microdroplet microcarriers

    Directing cell migration using micropatterned and dynamically adhesive polymer brushes

    Get PDF
    This work was funded by the BBSRC, New Investigator Award (BB/J000914/1)

    Biofunctionalized Patterned Polymer Brushes via Thiol-Ene Coupling for the Control of Cell Adhesion and the Formation of Cell Arrays

    Get PDF
    Thiol–ene radical coupling is increasingly used for the biofunctionalization of biomaterials. Thiol–ene chemistry presents interesting features that are particularly attractive for platforms requiring specific reactions with peptides or proteins and the patterning of cells, such as reactivity in physiological conditions and photoactivation. In this work, we synthesized alkene-functionalized (allyl and norbornene residues) antifouling polymer brushes (based on poly­(oligoethylene glycol methacrylate)) and studied thiol–ene coupling with a series of thiols including cell adhesive peptides RGD and REDV. The adhesion of umbilical vein endothelial cells (HUVECs) to these interfaces was studied and highlighted the absence of specific integrin engagement to REDV, in contrast to the high level of cell spreading observed on RGD-functionalized polymer brushes. This revealed that α<sub>4</sub>β<sub>1</sub> integrins (binding to REDV sequences) are not sufficient on their own to sustain HUVEC spreading, in contrast to α<sub>v</sub>β<sub>3</sub> and α<sub>5</sub>β<sub>1</sub> integrins. In addition, we photopatterned peptides at the surface of poly­(oligoethylene glycol methacrylate) (POEGMA) brushes and characterized the quality of the resulting arrays by epifluorescence microscopy and atomic force microscopy (AFM). This allowed the formation of cell patterns and demonstrated the potential of thiol–ene based photopatterning for the design of cell microarrays

    Highly Stable RNA Capture by Dense Cationic Polymer Brushes for the Design of Cytocompatible, Serum-Stable SiRNA Delivery Vectors

    Get PDF
    The high density of polymer brushes confers to these coatings unique physicochemical properties, in particular for the regulation of biomolecular interaction and the design of highly selective coatings for biosensors and protein patterning. Here, we show that high density poly­(dimethylaminoethyl methacrylate) cationic polymer brushes enable the stable uptake of high levels of oligonucleotides. This is proposed to result from the high degree of crowding and associated increase in entropic driving force for the binding of polyelectrolytes such as nucleic acid molecules. We further demonstrate the ease with which such coatings allow the design of highly structured nanomaterials for siRNA delivery using block copolymer-brush-based nanoparticles that allow the protection of oligonucleotides by a protein-resistant outer block. In particular, these nanomaterials display a high serum stability and low cytotoxicity while retaining excellent knock down efficiencies. Polymer brush-based nanomaterials therefore appear particularly attractive for the rational design of a new generation of high performance theranostics and RNA delivery probes
    • …
    corecore