13 research outputs found
Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes
Fish play a key role in the trophic dynamics of lakes. With climate warming, complex changes in fish assemblage structure may be expected owing to direct effects of temperature and indirect effects operating through eutrophication, water level changes, stratification and salinisation. We reviewed published and new long-term (10â100 years) fish data series from 24 European lakes (area: 0.04â5,648 km2; mean depth: 1â177 m; a northâsouth gradient from Sweden to Spain). Along with an annual temperature increase of about 0.15â0.3°C per decade profound changes have occurred in either fish assemblage composition, body size and/or age structure during recent decades and a shift towards higher dominance of eurythermal species. These shifts have occurred despite a reduction in nutrient loading in many of the lakes that should have benefited the larger-sized individuals and the fish species typically inhabiting cold-water, low-nutrient lakes. The cold-stenothermic Arctic charr has been particularly affected and its abundance has decreased in the majority of the lakes where its presence was recorded. The harvest of cool-stenothermal brown trout has decreased substantially in two southern lakes. Vendace, whitefish and smelt show a different response depending on lake depth and latitude. Perch has apparently been stimulated in the north, with stronger year classes in warm years, but its abundance has declined in the southern Lake Maggiore, Italy. Where introduced, roach seems to take advantage of the higher temperature after years of low population densities. Eurythermal species such as common bream, pikeâperch and/or shad are apparently on the increase in several of the lakes. The response of fish to the warming has been surprisingly strong and fast in recent decades, making them ideal sentinels for detecting and documenting climate-induced modifications of freshwater ecosystems
High-density genotyping study identifies four new susceptibility loci for atopic dermatitis
Atopic dermatitis is a common inflammatory skin disease with a strong heritable component. Pathogenetic models consider keratinocyte differentiation defects and immune alterations as scaffolds, and recent data indicate a role for autoreactivity in at least a subgroup of patients. FLG (encoding filaggrin) has been identified as a major locus causing skin barrier deficiency. To better define risk variants and identify additional susceptibility loci, we densely genotyped 2,425 German individuals with atopic dermatitis (cases) and 5,449 controls using the Immunochip array followed by replication in 7,196 cases and 15,480 controls from Germany, Ireland, Japan and China. We identified four new susceptibility loci for atopic dermatitis and replicated previous associations. This brings the number of atopic dermatitis risk loci reported in individuals of European ancestry to 11. We estimate that these susceptibility loci together account for 14.4% of the heritability for atopic dermatitis