122 research outputs found

    A single fungal strain was the unexpected cause of a mass aspergillosis outbreak in the world's largest and only flightless parrot.

    Get PDF
    Kākāpō are a critically endangered species of parrots restricted to a few islands off the coast of New Zealand. Kākāpō are very closely monitored, especially during nesting seasons. In 2019, during a highly successful nesting season, an outbreak of aspergillosis affected 21 individuals and led to the deaths of 9, leaving a population of only 211 kākāpō. In monitoring this outbreak, cultures of aspergillus were grown, and genome sequenced. These sequences demonstrate that, very unusually for an aspergillus outbreak, a single strain of aspergillus caused the outbreak. This strain was found on two islands, but only one had an outbreak of aspergillosis; indicating that the strain was necessary, but not sufficient, to cause disease. Our analysis provides an understanding of the 2019 outbreak and provides potential ways to manage such events in the future

    A single fungal strain was the unexpected cause of a mass aspergillosis outbreak in the world's largest and only flightless parrot

    Get PDF
    Kākāpō are a critically endangered species of parrots restricted to a few islands off the coast of New Zealand. Kākāpō are very closely monitored, especially during nesting seasons. In 2019, during a highly successful nesting season, an outbreak of aspergillosis affected 21 individuals and led to the deaths of 9, leaving a population of only 211 kākāpō. In monitoring this outbreak, cultures of aspergillus were grown, and genome sequenced. These sequences demonstrate that, very unusually for an aspergillus outbreak, a single strain of aspergillus caused the outbreak. This strain was found on two islands, but only one had an outbreak of aspergillosis; indicating that the strain was necessary, but not sufficient, to cause disease. Our analysis provides an understanding of the 2019 outbreak and provides potential ways to manage such events in the future

    PPARgamma activity in subcutaneous abdominal fat tissue and fat mass gain during short-term overfeeding

    Get PDF
    Objective: As the peroxisome proliferator-activated receptor (PPAR) plays a central role in fat mass regulation, we investigated whether initial subcutaneous PPAR activity is related to fat mass generation during overfeeding. Subjects: Fourteen healthy female subjects (age 254 years, BMI 22.12.3 kg/m2). Design and measurements: Subjects were overfed with a diet supplying 50% more energy than baseline energy requirements for 14 days. Fasting blood samples were analyzed for leptin, insulin and glucose. Fasting subcutaneous abdominal fat biopsies were obtained for analysis of PPAR1, PPAR2, aP2 and UCP2 mRNAs. Results: Initial PPAR1 and 2, aP2 and UCP2 mRNAs were not related to fat gain (P>0.12). However, PPAR1, PPAR2 and aP2 mRNA changes were positively related to changes in plasma leptin (

    Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans

    Get PDF
    Aims Monocytes play critical roles in tissue injury and repair following acute myocardial infarction (AMI). Specifically targeting inflammatory monocytes in experimental models leads to reduced infarct size and improved healing. However, data from humans are sparse, and it remains unclear whether monocytes play an equally important role in humans. The aim of this study was to investigate whether the monocyte response following AMI is conserved between humans and mice and interrogate patterns of gene expression to identify regulated functions. Methods and results Thirty patients (AMI) and 24 control patients (stable coronary atherosclerosis) were enrolled. Female C57BL/6J mice (n = 6/group) underwent AMI by surgical coronary ligation. Myocardial injury was quantified by magnetic resonance imaging (human) and echocardiography (mice). Peripheral monocytes were isolated at presentation and at 48 h. RNA from separated monocytes was hybridized to Illumina beadchips. Acute myocardial infarction resulted in a significant peripheral monocytosis in both species that positively correlated with the extent of myocardial injury. Analysis of the monocyte transcriptome following AMI demonstrated significant conservation and identified inflammation and mitosis as central processes to this response. These findings were validated in both species. Conclusions Our findings show that the monocyte transcriptome is conserved between mice and humans following AMI. Patterns of gene expression associated with inflammation and proliferation appear to be switched on prior to their infiltration of injured myocardium suggesting that the specific targeting of inflammatory and proliferative processes in these immune cells in humans are possible therapeutic strategies. Importantly, they could be effective in the hours after AMI

    The promoter and the enhancer region of the KLK 3 (prostate specific antigen) gene is frequently mutated in breast tumours and in breast carcinoma cell lines

    Get PDF
    KLK3 or prostate specific antigen (PSA) is a serine protease, which is an established tumour marker of prostatic adenocarcinoma. PSA is now used widely for the diagnosis and monitoring of patients with prostate cancer. Recent studies have demonstrated that about 70% of breast cancers produce PSA. In this study, we examined the molecular mechanism underlying the expression of the PSA gene in breast cancer and breast cancer cell lines. We analysed nine breast tumours categorized on the basis of high- or low-PSA expression in tumour cytosols and four breast cancer cell lines. To determine abnormalities associated with PSA expression in breast tumours, genomic DNA was extracted and all five exons of the PSA gene were polymerase chain reaction (PCR) amplified and sequenced on both strands. PCR amplification was also performed for the promoter and enhancer elements of the PSA gene. No mutations were observed in the coding portion of the gene. A polymorphism was observed in exon 2 from three breast tumours. However, sequencing of the promoter and the enhancer elements of the PSA gene reveals several point mutations. Within a 5.8-kb promoter/enhancer region of the PSA gene, we detected 16 different mutational hotspots (appearing more than once in the nine tumours). Among these hotspots, two appeared in seven out of nine tumours. Most importantly, the androgen response element (ARE I) in the proximal promoter was found mutated in four tumours and in the breast carcinoma cell line MCF-7. Mutations associated with the ARE I have been shown previously to result in an 80% decrease in PSA gene expression. The mutations in the core enhancer and promoter region probably contribute to the aberrant expression of the PSA gene in breast tumours, possibly by altering the regulation of the gene by steroid hormones. © 1999 Cancer Research Campaig

    Resource heterogeneity and community structure: A case study in Heliconia imbricata Phytotelmata

    Full text link
    Complex or non-additive differences in the distribution and abundance of arthropod species inhabiting the water-filled bracts of Heliconia imbricata can be created by simple manipulations of resource levels. The primary resources for these assemblages are the corollas of the flowers that accumulate in the bracts. Removing or adding corollas to individual bracts changes the pattern in the abundance of arthropod species within each bract such that bracts with different treatments ultimately differ in composition and numerical associations among species. These results suggest that direct and indirect resource-mediated factors can structure or significantly affect the distribution and abundance of species in these and perhaps other assemblages. Thus, in natural communities, if resources are heterogeneous among patches (such as among the bracts in this study) structure in a given patch may be a function of the resource level of that patch and can differ significantly from neighboring patches that provide different resource levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47788/1/442_2004_Article_BF00665591.pd

    GPR109A and Vascular Inflammation

    No full text
    GPR109A has generated expanding interest since its discovery as the receptor for niacin a decade ago, along with deorphanisation as the receptor for endogenous ligand 3-hydroxy-butyrate shortly after. This interest is generated especially because of the continuing exploration of niacin's "pleiotropic" mechanisms of action and its potential in the "cross-talk" between metabolic and inflammatory pathways. As GPR109A's primary pharmacological ligand in clinical use, niacin has been used for over 50 years in the treatment of cardiovascular disease, mainly due to its favourable effects on plasma lipoproteins. However, it has become apparent that niacin also possesses lipoprotein-independent effects that influence inflammatory pathways mediated through GPR109A. In addition to its G-protein-mediated effects, recent evidence has emerged to support alternative GPR109A signalling via adaptive protein β-arrestins. In this article, we consider the role of GPR109A and its downstream effects in the context of atherosclerosis and vascular inflammation, along with insights into strategy for future drug development. © 2013 The Author(s)

    Effects of niacin on atherosclerosis and vascular function.

    No full text
    PURPOSE OF REVIEW: Niacin has been used for more than 50 years in the management of atherosclerosis and is associated with improved patient outcomes. The routine use of niacin has been superseded in recent years with the advent of newer lipid-modulating interventions. Recently, however, there has been a renewed interest in its use due to the appreciation of its many beneficial effects on atherosclerosis and endothelial function, both 'lipid-targeted' and 'pleiotropic'. This review will consider the effects of niacin in the setting of clinical trials and will critically evaluate proposed mechanisms of action. RECENT FINDINGS: The identification of the GPR109A receptor has promoted a greater insight into niacin's mechanism of action, with demonstrated beneficial effects on endothelial function and inflammation, in addition to its lipid modulation role. SUMMARY: Whether niacin itself is used routinely in the future will depend on the outcomes of two large outcome trials (AIM-HIGH and HPS2-THRIVE). In the future, however, with even better understanding of niacin pharmacology, new drugs may be able to be engineered to capture aspects of niacin that capitalize on the benefits more specifically and also more selectively, to avoid troublesome side-effects

    Nicotinic acid and the prevention of coronary artery disease.

    No full text
    PURPOSE OF REVIEW: Nicotinic acid is the most potent treatment clinically available for lowering LDL cholesterol and VLDL cholesterol and raising HDL cholesterol. The strong inverse relationship between coronary heart disease risk and HDL cholesterol at all levels of LDL cholesterol has, therefore, given renewed emphasis on the therapeutic potential of niacin. The purpose of this review is to evaluate advances in the elucidation of mechanisms by which nicotinic acid affects the lipoprotein profile and, more recently, emerging evidence of nonlipid-mediated anti-inflammatory effects. RECENT FINDINGS: Niacin treatment reduces cardiovascular events and the progression of atherosclerosis. Identification of G-protein-coupled receptor 109A as the receptor for nicotinic acid has provided insights into how treatment with this compound leads to a favourable alteration in HDL cholesterol. In addition, evidence of nonlipid-mediated anti-inflammatory effects of nicotinic acid such as direct enhancement of adiponectin secretion demonstrates a novel atheroprotective role. SUMMARY: Whether nicotinic acid use becomes routine in the treatment of atherosclerosis is likely to be determined by the results of two ongoing clinical outcome trials. In addition, further research is required to explore the 'pleiotropic' effects of nicotinic acid and will ultimately provide a platform for the development of newer molecules that are potentially beneficial but without the well known side-effects
    corecore