268 research outputs found

    A model analysis of static stress in the vestibular membranes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scheme of the core vestibular membranes, consisting of serially connected utricle, ampulla and semicircular canal, first appeared hundreds of millions of years ago in primitive fish and has remained largely unchanged during the subsequent course of evolution. The labyrinths of higher organisms build on this core structure, with the addition of the phylogenetically newer membrane structures, namely, saccule, lagena and cochlea. An analysis of static stress in these core vestibular membranes may contribute to a better understanding of the role of stress in the evolution of derivative membrane structures over the long term as well as the short-term membrane distortions seen in Meniere's disease.</p> <p>Methods</p> <p>A model of these core vestibular membranes is proposed in order to analyze the distribution of stress in the walls of the component chambers. The model uses basic geometrical elements of hollow cylinders and spheres to emulate the actual structures. These model elements lend themselves to a mathematical analysis of static stress in their membranes.</p> <p>Results</p> <p>Hoop stress, akin to the stress in hoops used to reinforce barrel walls, is found to be the predominant stress in the model membranes. The level of hoop stress depends not only on pressure but as well on a geometric stress factor that incorporates membrane shape, thickness and curvature. This result implies that hoop stress may be unevenly distributed in the membranes of the several vestibular chambers due to variations in these dimensional parameters. These results provide a theoretical framework for appraising hoop stress levels in any vestibular labyrinth whose dimensions are known.</p> <p>Conclusion</p> <p>Static hoop stress disparities are likely to exist in the vestibular membranes given their complex physical configurations. Such stress disparities may contribute to the development of membrane pathologies as seen in Meniere's Disease. They may also factor in the evolutionary development of other derivative membrane structures such as the saccule, the lagena, and the cochlea found in higher animals.</p

    Population prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae in the Netherlands. should asymptomatic persons be tested during Population-based chlamydia Screening also for gonorrhoea or only if chlamydial infection is found?

    Get PDF
    BACKGROUND: Screening and active case finding for Chlamydia trachomatis (CT) is recommended to prevent reproductive morbidity. However insight in community prevalence of gonococcal infections and co-infections with Neisseria gonorrhoea (NG) is lacking. METHODS: Nested study within a large population-based Chlamydia Screening Pilot among 21.000 persons 15–29 year. All CT-positive (166) and a random sample of 605 CT-negative specimens were as well tested for gonococcal infection. RESULTS: Overall Chlamydia prevalence in the Pilot was 2.0% (95% CI: 1.7–2.3), highest in very urban settings (3.2%; 95% CI: 2.4–4.0) and dependent of several risk factors. Four gonococcal infections were found among 166 participants with CT infection (4/166 = 2.4%; 95% CI: 0.1%–4.7%). All four had several risk factors and reported symptoms. Among 605 CT-negative persons, no infection with NG could be confirmed. CONCLUSION: A low rate of co-infections and a very low community prevalence of gonococcal infections were found in this population based screening programme among young adults in the Netherlands. Population screening for asymptomatic gonococcal infections is not indicated in the Netherlands. Although co-infection with gonorrhoea among CT-positives is dependent on symptoms and well-known algorithms for elevated risks, we advise to test all CT-positives also for NG, whether symptomatic or asymptomatic

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Evidence That Aberrant Expression of Tissue Transglutaminase Promotes Stem Cell Characteristics in Mammary Epithelial Cells

    Get PDF
    Cancer stem cells (CSCs) or tumor initiating cells (TICs) make up only a small fraction of total tumor cell population, but recent evidence suggests that they are responsible for tumor initiation and the maintenance of tumor growth. Whether CSCs/TICs originate from normal stem cells or result from the dedifferentiation of terminally differentiated cells remains unknown. Here we provide evidence that sustained expression of the proinflammatory protein tissue transglutaminase (TG2) confers stem cell like properties in non-transformed and transformed mammary epithelial cells. Sustained expression of TG2 was associated with increase in CD44high/CD24low/- subpopulation, increased ability of cells to form mammospheres, and acquisition of self-renewal ability. Mammospheres derived from TG2-transfected mammary epithelial cells (MCF10A) differentiated into complex secondary structures when grown in Matrigel cultures. Cells in these secondary structures differentiated into Muc1-positive (luminal marker) and integrin α6-positive (basal marker) cells in response to prolactin treatment. Highly aggressive MDA-231 and drug-resistant MCF-7/RT breast cancer cells, which express high basal levels of TG2, shared many traits with TG2-transfected MCF10A stem cells but unlike MCF10A-derived stem cells they failed to form the secondary structures and to differentiate into Muc1-positive luminal cells when grown in Matrigel culture. Downregulation of TG2 attenuated stem cell properties in both non-transformed and transformed mammary epithelial cells. Taken together, these results suggested a new function for TG2 and revealed a novel mechanism responsible for promoting the stem cell characteristics in adult mammary epithelial cells

    Gene processing control loops suggested by sequencing, splicing, and RNA folding

    Get PDF
    Abstract Background Small RNAs are known to regulate diverse gene expression processes including translation, transcription, and splicing. Among small RNAs, the microRNAs (miRNAs) of 17 to 27 nucleotides (nts) undergo biogeneses including primary transcription, RNA excision and folding, nuclear export, cytoplasmic processing, and then bioactivity as regulatory agents. We propose that analogous hairpins from RNA molecules that function as part of the spliceosome might also be the source of small, regulatory RNAs (somewhat smaller than miRNAs). Results Deep sequencing technology has enabled discovery of a novel 16-nt RNA sequence in total RNA from human brain that we propose is derived from RNU1, an RNA component of spliceosome assembly. Bioinformatic alignments compel inquiring whether the novel 16-nt sequence or its precursor have a regulatory function as well as determining aspects of how processing intersects with the miRNA biogenesis pathway. Specifically, our preliminary in silico investigations reveal the sequence could regulate splicing factor Arg/Ser rich 1 (SFRS1), a gene coding an essential protein component of the spliceosome. All 16-base source sequences in the UCSC Human Genome Browser are within the 14 instances of RNU1 genes listed in wgEncodeGencodeAutoV3. Furthermore, 10 of the 14 instances of the sequence are also within a common 28-nt hairpin-forming subsequence of RNU1. Conclusions An abundant 16-nt RNA sequence is sourced from a spliceosomal RNA, lies in a stem of a predicted RNA hairpin, and includes reverse complements of subsequences of the 3'UTR of a gene coding for a spliceosome protein. Thus RNU1 could function both as a component of spliceosome assembly and as inhibitor of production of the essential, spliceosome protein coded by SFRS1. Beyond this example, a general procedure is needed for systematic discovery of multiple alignments of sequencing, splicing, and RNA folding data

    Polyhedra Circuits and Their Applications

    Get PDF
    To better compute the volume and count the lattice points in geometric objects, we propose polyhedral circuits. Each polyhedral circuit characterizes a geometric region in Rd . They can be applied to represent a rich class of geometric objects, which include all polyhedra and the union of a finite number of polyhedron. They can be also used to approximate a large class of d-dimensional manifolds in Rd . Barvinok [3] developed polynomial time algorithms to compute the volume of a rational polyhedron, and to count the number of lattice points in a rational polyhedron in Rd with a fixed dimensional number d. Let d be a fixed dimensional number, TV(d,n) be polynomial time in n to compute the volume of a rational polyhedron, TL(d,n) be polynomial time in n to count the number of lattice points in a rational polyhedron, where n is the total number of linear inequalities from input polyhedra, and TI(d,n) be polynomial time in n to solve integer linear programming problem with n be the total number of input linear inequalities. We develop algorithms to count the number of lattice points in geometric region determined by a polyhedral circuit in O(nd⋅rd(n)⋅TV(d,n)) time and to compute the volume of geometric region determined by a polyhedral circuit in O(n⋅rd(n)⋅TI(d,n)+rd(n)TL(d,n)) time, where rd(n) is the maximum number of atomic regions that n hyperplanes partition Rd . The applications to continuous polyhedra maximum coverage problem, polyhedra maximum lattice coverage problem, polyhedra (1−β) -lattice set cover problem, and (1−β) -continuous polyhedra set cover problem are discussed. We also show the NP-hardness of the geometric version of maximum coverage problem and set cover problem when each set is represented as union of polyhedra

    Performance related factors are the main determinants of the von Willebrand factor response to exhaustive physical exercise

    Get PDF
    Background: Physical stress triggers the endothelium to release von Willebrand Factor (VWF) from the Weibel Palade bodies. Since VWF is a risk factor for arterial thrombosis, it is of great interest to discover determinants of VWF response to physical stress. We aimed to determine the main mediators of the VWF increase by exhaustive physical exercise. Methods: 105 healthy individuals (18-35 years) were included in this study. Each participant performed an incremental exhaustive exercise test on a cycle ergometer. Respiratory gas exchange measurements were obtained while cardiac function was continuously monitored. Blood was collected at baseline and directly after exhaustion. VWF antigen (VWF:Ag) levels, VWF collagen binding (VWF:CB) levels, ADAMTS13 activity and common variations in Syntaxin Binding Protein-5 (STXBP5, rs1039084 and rs9399599), Syntaxin-2 (STX2, rs7978987) and VWF (promoter, rs7965413) were determined. Results: The median VWF:Ag level at baseline was 0.94 IU/mL [IQR 0.8-1.1] and increased with 47% [IQR 25-73] after exhaustive exercise to a median maximum VWF:Ag of 1.38 IU/mL [IQR 1.1-1.8] (p<0.0001). VWF:CB levels and ADAMTS13 activity both also increased after exhaustive exercise (median increase 43% and 12%, both p<0.0001). The strongest determinants of the VWF:Ag level increase are performance related (p<0.0001). We observed a gender difference in VWF:Ag response to exercise (females 1.2 IU/mL; males 1.7 IU/mL, p = 0.001), which was associated by a difference in performance. Genetic variations in STXBP5, STX2 and the VWF promoter were not associated with VWF:Ag levels at baseline nor with the VWF:Ag increase. Conclusions: VWF:Ag levels strongly increase upon exhaustive exercise and this increase is strongly determined by physical fitness level and the intensity of the exercise, while there is no clear effect of genetic variation in STXBP5, STX2 and the VWF promoter

    A Study of the Influence of Sex on Genome Wide Methylation

    Get PDF
    Sex differences in methylation status have been observed in specific gene-disease studies and healthy methylation variation studies, but little work has been done to study the impact of sex on methylation at the genome wide locus-to-locus level or to determine methods for accounting for sex in genomic association studies. In this study we investigate the genomic sex effect on saliva DNA methylation of 197 subjects (54 females) using 20,493 CpG sites. Three methods, two-sample T-test, principle component analysis and independent component analysis, all successfully identify sex influences. The results show that sex not only influences the methylation of genes in the X chromosome but also in autosomes. 580 autosomal sites show strong differences between males and females. They are found to be highly involved in eight functional groups, including DNA transcription, RNA splicing, membrane, etc. Equally important is that we identify some methylation sites associated with not only sex, but also other phenotypes (age, smoking and drinking level, and cancer). Verification was done through an independent blood cell DNA methylation data (1298 CpG sites from a cancer panel array). The same genomic site-specific influence pattern and potential confounding effects with cancer were observed. The overlapping rate of identified sex affected genes between saliva and blood cell is 81% for X chromosome, and 8% for autosomes. Therefore, correction for sex is necessary. We propose a simple correction method based on independent component analysis, which is a data driven method and accommodates sample differences. Comparison before and after the correction suggests that the method is able to effectively remove the potentially confounding effects of sex, and leave other phenotypes untouched. As such, our method is able to disentangle the sex influence on a genome wide level, and paves the way to achieve more accurate association analyses in genome wide methylation studies

    Estimating the Duration of Pertussis Immunity Using Epidemiological Signatures

    Get PDF
    Case notifications of pertussis have shown an increase in a number of countries with high rates of routine pediatric immunization. This has led to significant public health concerns over a possible pertussis re-emergence. A leading proposed explanation for the observed increase in incidence is the loss of immunity to pertussis, which is known to occur after both natural infection and vaccination. Little is known, however, about the typical duration of immunity and its epidemiological implications. Here, we analyze a simple mathematical model, exploring specifically the inter-epidemic period and fade-out frequency. These predictions are then contrasted with detailed incidence data for England and Wales. We find model output to be most sensitive to assumptions concerning naturally acquired immunity, which allows us to estimate the average duration of immunity. Our results support a period of natural immunity that is, on average, long-lasting (at least 30 years) but inherently variable

    Protein disulphide isomerase-assisted functionalization of proteinaceous substrates

    Get PDF
    Protein disulphide isomerase (PDI) is an enzyme that catalyzes thiol-disulphide exchange reactions among a broad spectrum of substrates, including proteins and low-molecular thiols and disulphides. As the first protein-folding catalyst reported, the study of PDI has mainly involved the correct folding of several cysteine-containing proteins. Its application on the functionalization of protein-based materials has not been extensively reported. Herein, we review the applications of PDI on the modification of proteinaceous substrates and discuss its future potential. The mechanism involved in PDI functionalization of fibrous protein substrates is discussed in detail. These approaches allow innovative applications in textile dyeing and finishing, medical textiles, controlled drug delivery systems and hair or skin care products.We thank to FCT 'Fundacao para a Ciencia e Tecnologia' (scholarship SFRH/BD/38363/2007) for providing Margarida Fernandes the grant for PhD studies
    corecore