16 research outputs found

    Dur脿, Antoni; Camonita, Francesco; Berzi, Matteo i Noferini, Andrea (2018). Euroregions, excellence and innovation across EU borders : A Catalogue of good practices. Barcelona: UAB. Departament de Geografia

    Get PDF
    Obra ressenyada: Antoni DUR脌; Francesco CAMONITA; Matteo BERZI i Andrea NOFERINI, Euroregions, excellence and innovation across EU borders: a Catalogue of good practices. Barcelona: UAB. Departament de Geografia, 2018

    Electronic structures of Pd(II) dimers.

    No full text
    The Pd(II) dimers [(2-phenylpyridine)Pd(mu-X)](2) and [(2-p-tolylpyridine)Pd(mu-X)](2) (X = OAc or TFA) do not exhibit the expected planar geometry (of approximate D(2h) symmetry) but instead resemble an open "clamshell" in which the acetate ligands are perpendicular to the plane containing the Pd atoms and 2-arylpyridine ligands, with the Pd atoms brought quite close to one another (approximate distance 2.85 A). The molecules adopt this unusual geometry in part because of a d(8)-d(8) bonding interaction between the two Pd centers. The Pd-Pd dimers exhibit two successive one-electron oxidations: Pd(II)-Pd(II) to Pd(II)-Pd(III) to Pd(III)-Pd(III). Photophysical measurements reveal clear differences in the UV-visible and low-temperature fluorescence spectra between the clamshell dimers and related planar dimeric [(2-phenylpyridine)Pd(mu-Cl)](2) and monomeric [(2-phenylpyridine)Pd(en)][Cl] (en = ethylenediamine) complexes that do not have any close Pd-Pd contacts. Density functional theory and atoms in molecules analyses confirm the presence of a Pd-Pd bonding interaction in [(2-phenylpyridine)Pd(mu-X)](2) and show that the highest occupied molecular orbital is a d(z(2)) sigma* Pd-Pd antibonding orbital, while the lowest unoccupied molecular orbital and close-lying empty orbitals are mainly located on the 2-phenylpyridine rings. Computational analyses of other Pd(II)-Pd(II) dimers that have short Pd-Pd distances yield an orbital ordering similar to that of [(2-phenylpyridine)Pd(mu-X)](2), but quite different from that found for d(8)-d(8) dimers of Rh, Ir, and Pt. This difference in orbital ordering arises because of the unusually large energy gap between the 4d and 5p orbitals in Pd and may explain why Pd d(8)-d(8) dimers do not exhibit the distinctive photophysical properties of related Rh, Ir, and Pt species

    Alkane Functionalization via Electrophilic Activation

    No full text
    Electrophilic activation, which may be defined as the substitution of a transition metal center for a proton to generate a new metal鈥揷arbon bond, is the basis of a number of promising approaches to selective catalytic functionalization of alkanes. The field was introduced by the groundbreaking chemistry exhibited by aqueous chloroplatinum complexes, reported by Shilov in the early 1970s. Since then the field has expanded greatly, and electrophilic alkane activation has been demonstrated using a wide variety of species. These include ligand-supported platinum complexes; complexes of additional late transition metals, most commonly palladium but also iridium, gold and others; and even post-transition metals such as mercury. That body of work is surveyed here, with particular emphasis on mechanistic understanding, examples of actual functionalization at sp^3-hybridized C鈥揌 bonds in alkanes and related compounds, and assessment of the further development that will be needed for practical applications

    Exceptionally fast carbon鈥揷arbon bond reductive elimination from gold(III)

    No full text
    Reductive elimination of carbon-carbon (C-C) bonds occurs in numerous metal-catalyzed reactions. This process is well documented for a variety of transition metal complexes. However, C-C bond reductive elimination from a limited number of Au(III) complexes has been shown to be a slow and prohibitive process, generally requiring elevated temperature. Herein, we show that oxidation of a series of mono- and bimetallic Au(I) aryl complexes at low temperature generates observable Au(III) and Au(II) intermediates. We also show that aryl-aryl bond reductive elimination from these oxidized species is not only among the fastest observed for any transition metal, but is also mechanistically distinct from previously studied alkyl-alkyl and aryl-alkyl reductive eliminations from Au(III)
    corecore