12 research outputs found

    The population of close double white dwarfs in the Galaxy

    Get PDF
    We present a new model for the Galactic population of close double white dwarfs. The model accounts for the suggestion of the avoidance of a substantial spiral-in during mass transfer between a giant and a main-sequence star of comparable mass and for detailed cooling models. It agrees well with the observations of the local sample of white dwarfs if the initial binary fraction is close to 50% and an ad hoc assumption is made that white dwarfs with mass less than about 0.3 solar mass cool faster than the models suggest. About 1000 white dwarfs brighter than V=15 have to be surveyed for detection of a pair which has total mass greater than the Chandrasekhar mass and will merge within 10 Gyr.Comment: 15 pages, 7 figures, to appear in Proc. ``The influence of binaries on stellar population studies'', Brussels, August 2000 (Kluwer, D. Vanbeveren ed.

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Observational Constraints on the Common Envelope Phase

    Full text link
    The common envelope phase was first proposed more than forty years ago to explain the origins of evolved, close binaries like cataclysmic variables. It is now believed that the phase plays a critical role in the formation of a wide variety of other phenomena ranging from type Ia supernovae through to binary black holes, while common envelope mergers are likely responsible for a range of enigmatic transients and supernova imposters. Yet, despite its clear importance, the common envelope phase is still rather poorly understood. Here, we outline some of the basic principles involved, the remaining questions as well as some of the recent observational hints from common envelope phenomena - namely planetary nebulae and luminous red novae - which may lead to answering these open questions.Comment: 29 pages, 8 figures. To appear in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds. Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    On the lambda-parameter of the common envelope evolution

    No full text
    The binding energy of the envelope to the core of a donor star will determine the outcome of a binary evolving through a common envelope (CE) and spiral-in phase. This binding energy is expressed by a parameter lambda which depends strongly on the evolutionary stage (i.e. stellar radius). Following our earlier publication, we present the lambda-parameter of stars with masses 11 - 100 M.

    Individual Differences in the Evolution of Counting.

    No full text
    <b></b> The alphabet-arithmetic paradigm, in which adults are asked to add a numeral addend to a letter augend (e.g., D + 3 = G), was conceived to mimic the way children learn addition. Studies using this paradigm often conclude that procedural learning leads to the memorization of associations between operands and answers. However, as recently suggested, memorization might only be used by a minority of participants and only for problems with the largest addend. In the present paper, we aim at investigating these individual differences through transfer effects from trained problems to new ones. Participants were trained over 12 learning sessions, followed by 3 transfer sessions. A group of participants, that we called the nonbreakers, showed a linear function associating solution times and addends throughout the experiment. In this group, transfer was observed during the first transfer session, suggesting that a procedural strategy, transferable to new items, was still used at the end of training. In another group of participants, that we called the breakers, we observed a decrease in solution times for problems with the largest addend. In this group, transfer was only observed after two transfer sessions, suggesting that procedural strategies were not used as often in this group than in the other group. This was especially true for problems with the largest addend because transfer effects were stronger when they were excluded. Therefore, during learning and for breakers, the answers to problems with larger addends are retrieved first and, as for non-breakers, the answers to problems with very small operands remain computed

    Automatization through Practice: The Opportunistic-Stopping Phenomenon Called into Question.

    Get PDF
    As a theory of skill acquisition, the instance theory of automatization posits that, after a period of training, algorithm-based performance is replaced by retrieval-based performance. This theory has been tested using alphabet-arithmetic verification tasks (e.g., is A + 4 = E?), in which the equations are necessarily solved by counting at the beginning of practice but can be solved by memory retrieval after practice. A way to infer individuals' strategies in this task was supposedly provided by the opportunistic-stopping phenomenon, according to which, if individuals use counting, they can take the opportunity to stop counting when a false equation associated with a letter preceding the true answer has to be verified (e.g., A + 4 = D). In this case, such within-count equations would be rejected faster than false equations associated with letters following the true answers (e.g., A + 4 = F, i.e., outside-of-count equations). Conversely, the absence of opportunistic stopping would be the sign of retrieval. However, through a training experiment involving 19 adults, we show that opportunistic stopping is not a phenomenon that can be observed in the context of an alphabet-arithmetic verification task. Moreover, we provide an explanation of how and why it was wrongly inferred in the past. These results and conclusions have important implications for learning theories because they demonstrate that a shift from counting to retrieval over training cannot be deduced from verification time differences between outside and within-count equations in an alphabet-arithmetic task

    Common envelope evolution: where we stand and how we can move forward

    Get PDF
    Contains fulltext : 111306.pdf (preprint version ) (Open Access

    Binary Population Synthesis: Low- and Intermediate-Mass X-Ray Binaries

    Get PDF
    As has only recently been recognized, X-ray binaries with intermediate-mass secondaries are much more important than previously believed. To assess the relative importance of low- and intermediate-mass X-ray binaries (LMXBs and IMXBs), we have initiated a systematic study of these systems consisting of two parts: an exploration of the evolution of LMXBs and IMXBs for a wide range of initial masses and orbital periods using detailed binary stellar evolution calculations, and an integration of these results into a Monte-Carlo binary population synthesis code. Here we present some of the main results of our binary calculations and some preliminary results of the population synthesis study for a ``standard'' reference model. While the inclusion of IMXBs improves the agreement with the observed properties of ``LMXBs'', several significant discrepancies remain, which suggests that additional physical processes need to be included in the model
    corecore