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Abstract This work aims to present our current best physical understanding
of common-envelope evolution (CEE). We highlight areas of consensus and dis-
agreement, and stress ideas which should point the way forward for progress in
this important but long-standing and largely unconquered problem. Unusually
for CEE-related work, we mostly try to avoid relying on results from popu-
lation synthesis or observations, in order to avoid potentially being misled by
previous misunderstandings. As far as possible we debate all the relevant issues
starting from physics alone, all the way from the evolution of the binary sys-
tem immediately before CEE begins to the processes which might occur just
after the ejection of the envelope. In particular, we include extensive discussion
about the energy sources and sinks operating in CEE, and hence examine the
foundations of the standard energy formalism. Special attention is also given
to comparing the results of hydrodynamic simulations from different groups
and to discussing the potential effect of initial conditions on the differences in
the outcomes. We compare current numerical techniques for the problem of
CEE and also whether more appropriate tools could and should be produced
(including new formulations of computational hydrodynamics, and attempts
to include 3D processes within 1D codes). Finally we explore new ways to link
CEE with observations. We compare previous simulations of CEE to the recent
outburst from V1309 Sco, and discuss to what extent post-common-envelope
binaries and nebulae can provide information, e.g. from binary eccentricities,
which is not currently being fully exploited.

Keywords Close binaries · Stellar structure, interiors, evolution · Hydrody-
namics
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1 Introduction: The importance of common-envelope evolution

Common-envelope evolution (CEE) is the name given to a short-lived phase
in the life of a binary star during which two stars orbit inside a single, shared
envelope. CEE is believed to be a vital process in the evolution of a large
number and wide diversity of binary stars. This almost certainly includes the
progenitors of Type Ia supernovae, X-ray binaries and double neutron stars.
Hence understanding the outcome of CEE is required in order to understand
the production of the most important cosmological standard candles, the near-
est known black holes and the most promising stellar-mass gravitational-wave
sources.

The reason for the importance of CEE is relatively simple to explain, espe-
cially for compact binaries. The stars which produced the compact component
of many interesting systems must once have been orders-of-magnitude larger
than would fit within the present-day system. CEE is currently accepted as
allowing the formation of these systems. The standard reference for CEE is
Paczynski (1976). This cites private communication with Ostriker, along with
Ron Webbink’s PhD thesis, for the origin of this idea (see also van den Heuvel
1976). After the ejection of the common envelope (CE), the remains of the
binary stars can then be left in the tight orbits we observe.

However, once a CE phase begins, envelope ejection is not inevitable. When
CEE leads to envelope ejection (and a tighter binary) and when it leads to
a merger is one of the questions which we can still not answer from our own
theoretical understanding: all we have been able to do with comparative cer-
tainty is appeal to the existence of apparently post-CE binaries. Work which
discussed the physical situation involved in CEE was published before 1976
(Bisnovatyi-Kogan & Sunyaev, 1971; Sparks & Stecher, 1974; Refsdal et al.,
1974), and interest in such cases helped to inspire the realisation that CEE
might be a formation mechanism for close binaries. Nonetheless, today’s theo-
retical picture of the endpoint of CEE – and the consequent utility of CEE for
producing observed systems – is more based on evolutionary necessity than
physical calculation. In the absence of a complete physical solution, simplified
treatments containing free parameters, have been adopted (see § 1.3 for an
introduction to the history of this process, and for details of the recipes see
§ 3 and § 5). The free parameters in these simplified treatments are sometimes
tuned to match observations, and sometimes values are assumed in order to
make predictions. That is problematic since there is little reason to believe that
these parameters should take a global value; the time-scales and energy sources
and sinks could (and probably do) vary considerably between situations.

In general it is also not sufficient to state that CE must act in a certain way
in order to produce the observed systems, since perhaps alternative formation
channels are available. For example, population synthesis codes are able to
reproduce the observed population of black-hole low-mass X-ray binaries if
they set CE ejection efficiencies to high enough values, but the best physical
constraints we have seem to preclude the formation of one subset of them
(Podsiadlowski et al., 2003, and references therein). Taking this formation re-
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striction seriously, rather than assuming CEE is somehow efficient enough, led
to the proposal of new formation mechanisms which might also help explain,
e.g., the strange abundances of the donors in these systems (Justham et al.,
2006; Chen & Li, 2006; Ivanova, 2006; Podsiadlowski et al., 2010).

Since CEE remains central to our understanding of the formation of many
types of system, it is uncomfortable that in many cases we are still fitting
parameters with few physical constraints. CEE is one of the most important
unsolved problems in stellar evolution, and is arguably the most significant
and least-well-constrained major process in binary evolution (for alternative
reviews see Taam & Sandquist, 2000; Webbink, 2008; Taam & Ricker, 2010).

1.1 A crucial astrophysical process

Because CEE is important in the formation of a wide variety of systems, a
discussion of the astrophysical importance of CEE in the context of compact
binaries could easily be lengthy; we will give a very incomplete survey.

As with most astrophysical processes, we cannot wait long enough to watch
the formation of many systems by CEE. Nor can we normally infer the precise
prior history of individual systems. So in order to make quantitative tests of
our formation theories we model entire populations of objects and then com-
pare the properties of those synthesised populations to reality. The tools which
allow us to do this are called population synthesis codes. To distinguish this
type of population synthesis from those used in other areas of astrophysics,
the more specific term binary population synthesis (BPS) is often used. Such
calculations turn statistical descriptions of stellar initial conditions – such as
the initial mass function (IMF) and binary separation distribution – into pre-
dictions for, e.g., the formation rates for different type of stellar exotica, or
the expected present-day distribution for the masses and orbital-periods of the
type of compact binary under investigation. To do this, BPS simulates the evo-
lution of many different binary systems. Obtaining meaningful results for rare
classes of system or event (such as X-ray binaries or type Ia supernovae) may
require calculating the evolution of hundreds of millions of individual binary
systems; hence BPS codes necessarily include simplified and parametrised de-
scriptions of evolutionary processes such as CEE. Sometimes BPS is used to
try to determine which values of CEE parameters best reproduce reality, al-
though the many uncertainties and nonlinearities involved in binary evolution
mean that this must be done cautiously. Nonetheless, BPS certainly enables
us to see how our poor understanding of CEE converts to uncertainties in
predictions, as we now illustrate.

One currently important example is how uncertainties in the outcome
of CEE carry through into large uncertainties in theoretical predictions for
compact-object merger rates, as have been used to help justify observational
facilities such as LIGO. Gravitational-wave observatories clearly have an in-
terest in the expected merger rates of compact objects in the local universe,
in order to try to predict the rate of events they should detect. Such mergers,
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when resulting from primordial binaries, are typically expected to involve at
least one CE phase in their production. Some of the merger event rate could
also be produced following dynamical interactions in dense stellar systems (e.g.
globular clusters).

Taking results from population synthesis calculations, Abadie et al. (2010),
quote ‘realistic’ rates for mergers of a NS with a stellar-mass BH which span
more than two orders of magnitude (the full range quoted in their table 7
covers four orders of magnitude). Whilst there are certainly other significant
unknowns, almost the full range of uncertainty within the set of rates quoted as
realistic can emerge just from altering how one class of systems entering CEE
during a particular evolutionary phase is treated (Belczynski et al., 2007), and
the potential occurrence of a special case of CEE can produce one of the higher
realistic rates (Dewi et al., 2006). The BPS rates for the merger of two stellar-
mass BHs quoted in Abadie et al. (2010) are even more uncertain (a range of
more than three orders of magnitude for the field-binary models considered
realistic), and again changes in just how CEE is treated could encompass most
of that range of rates (e.g. for Belczynski et al., 2007, with otherwise identical
assumptions, the presence or absence of a single CE channel can affect the
BH-BH merger rate by a factor of 500).

Another type of compact-object mergers – of carbon-oxygen white dwarfs
(CO WDs) – is potentially also responsible for type Ia supernovae (SN Ia).
Indeed, the paper regularly cited for introducing the energy parameterisation
of CEE (Webbink, 1984, see §3) was aiming to study WD-WD mergers, includ-
ing them as potential progenitors of SN Ia (see also Iben & Tutukov, 1984). If
these double-degenerate mergers need to be of roughly Chandrasekhar-mass
or more in order to lead to an explosion then the individual CO WDs need to
be relatively massive. In turn, this suggests that the core evolution of the stars
which produced the CO WDs was not truncated very early; hence the initial
binary separation needs to have been wide enough to allow at least the primary
to evolve into a relatively massive CO WD. At the point when both WDs have
been formed, the orbital separation needs to be small enough for gravitational
radiation to be able to lead to a merger within the age of the universe. This is
another classic case where CEE is required to turn a long-period binary into
a short-period one. Figure 1 schematically illustrates potential evolutionary
scenarios leading to such a WD-WD merger. There are two distinct possibili-
ties for the character and outcome of the first mass transfer episode. Probably
currently physically preferable is that the first mass-transfer episode is stable;
in this scenario then such double-degenerate SN Ia progenitors only require
one CE phase in their production. However, the dominant formation channel
which emerges from many BPS predictions typically involves an unstable first
episode of mass transfer followed by CEE. If this second option does domi-
nate then CEE would be involved twice in forming potential double-degenerate
SN Ia. In this case then the energy transfer during CEE must be extremely
efficient (& 50%) in order to keep the binary fairly wide after the first CE
phase. Hence population synthesis predictions for the rates of such mergers
tend to adopt very high CE efficiencies, and tend to be very sensitive to re-



Common Envelope Evolution 7

ductions in that efficiency. For example, in the calculations by Ruiter et al.
(2011), perfect CE efficiency (specifically αCEλ=1, for which see §3) predicts
a Chandrasekhar-mass CO WD merger rate just consistent with the empirical
SN Ia rate. However, a reduction in overall CE energetic efficiency by a factor
of 8 reduces the predicted rate of SN Ia from the CO WD merger channel by
more than three orders of magnitude at 100 Myr after the starburst and makes
the merger rate almost completely negligible from ≈3 Gyr after the starburst;
the overall predicted SN Ia rate here falls far below the observed rate. Unfor-
tunately we cannot firmly state whether the first mass-transfer phase leads to
CEE or not, since we lack a sufficiently detailed knowledge of mass transfer
stability. However, this specific example has been the subject of considerable
debate (see §5). Understanding the general stability of mass transfer is a prob-
lem strongly related to CEE itself and will also be discussed later (§6)

Instead of, or in addition to, WD-WD mergers then SN Ia might be pro-
duced by accretion onto a CO WD in single-degenerate systems (see, e.g.,
Whelan & Iben, 1973). These systems also involve CEE in their formation,
so an improved understanding of CEE should help us to understand their
production. However, the predicted formation rates of SN Ia through single-
degenerate progenitors tend to be less strongly dependent on CE efficiency
than predictions for the double-degenerate systems. Indeed, in the models of
Ruiter et al. 2011 then the calculations which assume a lower CE efficiency
lead to an increase in the single-degenerate SN Ia rate at some epochs (see
also, e.g., Han & Podsiadlowski 2004, where the highest assumed CE efficiency
produces the lowest overall SN Ia rate for each otherwise equivalent set of mod-
els). If population calculations are to help determine which channels actually
produce SN Ia then tighter physical constraints on CE ejection, along with
a better understanding of when mass transfer leads to CEE, would be very
helpful. We note in passing that birthrates of particular classes of system are
not necessarily monotonically dependent on CE ejection efficiency (see, e.g.,
table 2 of Willems et al., 2005).

The formation of both classes of gamma-ray bursts (GRBs) probably also
involves CEE. Some GRBs are believed to result from compact object merg-
ers (as above); these are associated with the observed set of short-duration,
harder-spectrum bursts. The typically longer-duration observational subclass
of GRBs, whose parent populations are strongly linked with recent star for-
mation, are also likely to have CEE in their formation channels (Fryer et al.,
1999). These are thought to arise from a special-case of core-collapse in massive
stars; it is believed that the cores should be rotating rapidly enough to cause
a massive accretion disc to form as the core collapses. In addition, the pro-
genitor star is expected to have lost its envelope, both on theoretical grounds
(to enable the jet of the GRB to escape) and on observational grounds (when
these GRBs have been linked with a supernova, that supernova has been of a
stripped-envelope star, typically a broad-lined type Ic supernova). Stripping
the envelope and spinning-up the core can be achieved by several channels
involving CEE (for a review of this and of alternative possibilities, see Fryer
et al. 2007; also Podsiadlowski et al. 2010). One notable recently-observed



8 Ivanova et al.

Fig. 1 Examples of evolutionary channels where CEE plays a crucial role in the formation
of the final system. The leftmost column presents a variety of ways to form potential SN
Ia progenitors, including double-degenerate mergers and accretion onto a CO WD from a
non-degenerate companion. The middle and rightmost columns illustrate the formation of
systems containing neutron stars: one route by which a binary millisecond pulsar may form,
and one way to produce a double pulsar (formation of which could also involve an additional
CE phase before the first SN). Other variations of these channels exist. Abbreviations: ZAMS
– zero age main sequence, RLO – Roche lobe overflow, CE – common envelope, CO WD
– carbon-oxygen white dwarf, He – He star, HMXB – high-mass X-ray binary, LMXB –
low-mass X-ray binary, MSP – millisecond pulsar, NS – neutron star, SN – supernova.
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GRB has been explained using a specific CEE-based model (see Thöne et al.
2011; for the underlying model see, e.g., Fryer & Woosley 1998).

The physics of CEE also has the potential to revolutionise our understand-
ing of the evolution of ‘single’ stars. A star might have its evolution altered
by CE-type inspiral of a planet or brown dwarf. In particular, it has been pro-
posed that planets might eject the envelopes of some red giants (Soker 1998;
see also Nelemans & Tauris 1998; Soker & Harpaz 2000; Soker & Hadar 2001;
De Marco & Soker 2011). Planet-driven envelope ejection might potentially
explain the formation of single low-mass white dwarfs (as proposed by Nele-
mans & Tauris 1998; see also the discussion and comparison of alternatives in
Justham et al. 2010). This possibility is now being driven by observation as
well as theory. Maxted et al. (2006) have observed a low-mass white dwarf (
≈ 0.39 M�) with a close brown-dwarf (0.053 M�) companion (see also, e.g.,
Setiawan et al., 2010). We should perhaps consider the long-term evolution
of every ‘single’ star with planets as effectively that of a binary (or multiple)
system with an extreme mass ratio.

1.2 An extraordinary physical problem

Despite the importance of CEE, it is essentially unsolved. The situation is
extremely challenging for both computation and analytic treatment; from be-
ginning to end the problem involves a complex mix of physical processes oper-
ating over a huge range of scales. A relatively common problem would be one
in which a neutron star (NS) spirals into the envelope of a giant. Simulations
of such a CE event might need to cover a range in timescale of ∼ 1010 (i.e.
from perhaps 1s, which is already three orders of magnitude longer than the
dynamical timescale of the NS, to ∼ 1000yr, the thermal time of the envelope
and plausible duration of the CE phase; note that this ignores the duration of
the onset of CEE. An interesting range in scale could be ∼ 108 (i.e. from ≈ 10
km, the size of the NS, to ≈ 1000R�), and even more if the details of the ac-
cretion onto the NS are important (as it might be; see §9), or if shocks within
the envelope need to be resolved more accurately than this allows. There is no
prospect of simulations with anything like a resolution of (108)3 in the rele-
vant future, nor ones which continue for 1010 timesteps. Even for less extreme
examples, in which the inspiralling secondary is not a compact object, com-
prehensive models are still beyond the reach of our ability. Calculations trying
to capture the most important aspects of CEE have been attempted for many
years (Taam et al., 1978; Meyer & Meyer-Hofmeister, 1979), but even today’s
sophisticated simulations necessarily ignore some almost certainly significant
physics (see §7 and 8).

1.3 A little history: how we arrived at the current situation

Whilst the physical complexity and numerical demands of CEE still leave us
with a very incomplete understanding of how it proceeds, it was recognized
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early on that very general considerations of energy and angular momentum
conservation might provide useful constraints on the outcomes. We note that
those early thoughts were not vastly less physically sophisticated than the pic-
tures used today. These fundamental constraints would then enable population
synthesis studies. The aim was to model the evolution of an ensemble of hypo-
thetical binaries in order to unravel the evolutionary channels that lead to the
wide variety of highly-evolved binaries actually observed, and also perhaps to
predict families of evolved binaries yet to be discovered or recognized.

The earliest treatment of CEE to be widely employed was one assuming
that the energy needed to eject the common envelope was derived entirely from
orbital energy dissipation (van den Heuvel, 1976). The current rationale for
neglecting other possible sources and sinks of energy is discussed below in §3,
although even at the very beginning it was recognised that there were several
possible complications. Paczynski (1976) identified frictional drag as driving
transfer of both orbital energy (as heat) and angular momentum from the
binary orbit to the common envelope, and realised that a combination of an-
gular momentum and energy conservation would drive the envelope expansion.
Moreover, Paczynski (1976) also discusses the fact that the expanding enve-
lope could be expected to radiate energy away at an increasing rate, and that
the consequences of such effects for the overall scenario are hard to quantify.

In the energy formalism that was adopted, the energy budget for the binary
is fixed at the onset of mass transfer and the post-common-envelope system is
constrained to have an orbital energy which is negative enough to provide the
energy necessary for envelope ejection. In reality, common-envelope ejection
cannot be completely efficient (since, for example, the ejecta carry away some
terminal kinetic energy), and so an efficiency parameter, αCE, was introduced
to characterize the fraction of dissipated orbital energy actually used to eject
the common envelope (Livio & Soker, 1988).

When it comes to quantifying the different terms appearing in the en-
ergy budget, elementary orbital mechanics tells us unambiguously that the
total orbital energy (potential plus kinetic) of a binary with separation a is
Eorb = −Gm1m2/2a. Evaluation of the envelope binding energy, Ebind, is a
more problematic affair (see §3). Webbink (1984) introduced a simple param-
eterization, Ebind = Gm1m1,env/R1 based on evaluation of the gravitational
potential energy plus internal energy of envelopes of a handful of models of
giant branch stars he had on hand; ionization/dissociation energy was ne-
glected. Unfortunately, his paper failed to stipulate which energy terms were
included or excluded in the approximation for Ebind, but the simple expression
introduced there was clearly intended only to provide an order-of-magnitude
estimate of Ebind.

More realistic evaluation of Ebind depends on the detailed structure of the
donor envelope. To that end, an additional factor, λ, was introduced (de Kool,
1990) to allow for differences in envelope structure:

Ebind = G
m1m1,env

λR1
. (1)
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As conceived, λ depends on the structure of the donor star, although in practice
it is sometimes treated as a free parameter.

The introduction of the λ parameter should have improved matters quan-
titatively. It would have been desirable to define this factor in the inverse,
i.e. Ebind = λGm1m1,env/R1, thereby avoiding nasty singularities when Ebind

changes sign (because of the recombination term), but the convention is now
irredeemably established. Unfortunately, when de Kool (1990) introduced λ,
he included only the gravitational term, and this seems to have led to the
notion that the internal energy was somehow separable from it. Of course the
Virial Theorem tells us that these terms are strongly related, though not nec-
essarily in a simple way. So when Dewi & Tauris (2001) turned to this issue,
they introduced, in addition to λg parameterizing the gravitational potential
energy, a second λb to parameterize the sum of gravitational and internal en-
ergy, and the issue immediately arose over which, if either, parameterization
should be used. Further, as it is noted now, the formal values of λ depend
strongly on where one places the mass cut for the ejected envelope.

While λ was invented to improve and simplify calculations, particularly for
population synthesis, it is now clear that not only is having a fixed value for
all possible systems wrong, but it is also still not certain how to calculate λ
for any given star, however well-known that star’s structure is. We will return
to this in more detail in §3.

The next formalism to be invented was based on conservation of angu-
lar momentum. The historical necessity for this alternative, known as the
γ-formalism (Nelemans et al., 2000), was to find at least some explanation for
formation of the known double-white dwarf (DWD) binaries. There it seemed
that the standard energy formalism failed, as it could only explain the ob-
served systems if energy is generated during CEE, i.e. αCE > 1. (More precisely
stated, an unknown source of energy appeared to be needed to replace the ex-
pected role of the orbital energy source, since the orbital energy actually acts
as a further energy sink for these systems.) Apparent violation of energy con-
servation law is rather stressful for a physicist, so a less obviously troublesome
conservation law was called upon to help. Again, as no self-consistent numeri-
cal simulations could have been performed at the time, the angular momentum
budget had to be parametrized and then its free parameter has been fine-tuned
using the observations of several known-to-the-date DWD systems. This did
not resolve the apparent energy generation problem, only hid it. Nonetheless,
it opened a discussion about the possibility to eject an envelope by some other
mechanism other than a standard common envelope event. We will consider
this formalism in more detail in § 5. Note that the current explanation for
the increase of the binary separation during this first mass-transfer phase is
that it is quasi-conservative, such that the mass transfer is driven by nuclear
energy input and thermal expansion. So there is no longer any apparent need
to resort to unexplained energy generation.

In nature, during a real CEE, both fundamental conservation laws must
– of course – be obeyed. However, neither of these two simplified formalisms
were designed to simultaneously obey both conservation laws. It has to be
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understood that these approximate methods were invented mainly because of
our inability – which continues to the present day – to self-consistently model a
complete CEE event. However, after many years of use in population synthesis,
the severe limitations of these educated guesses seem to have sometimes been
forgotten. These expressions can – all too easily – be used to make apparently
predictive statements which may have limited justification.

To summarise, an energy formalism first emerged based on the argument
that common-envelope ejection must be a dynamical process. If its duration
were as long as a thermal time-scale, the input from available energy sources
could be lost to radiation, but also other additional energy sources might well
play a role. A complete combination of all possible sinks and sources acting on
different timescales would lead to a very complex and difficult picture. In this
work we will examine the physics underlying CEE, and see to what extent we
can hope to move beyond these uncertain simplifications.

1.4 This work

This work aims to take a physical approach to the problem of CEE. It considers
CEE from first principles, trying not to let preconceptions and potentially-
misinterpreted observations or population synthesis calculations mislead us.
Hence it does not aim to be a comprehensive review of all possible implications
of the common envelope problem, but it does hope to build the state-of-the-art
in understanding CEE.

The next section (2) gives an overview of a notional CE event, dividing it
into phases within which different processes are dominant, and also pointing to
relevant sections within the remainder of the text. §3 then considers at length
the overall energy balance within CEE, whilst §4 considers the situation at
the end of the CE phase. §5 briefly discusses the application of angular mo-
mentum conservation to CEE. In §6 we look at the conditions which produce
and precede CEE. §7 then compares the results from different modern hydro-
dynamic simulations, and §8 discusses the best present-day simulation tools
along with potential future improvements in those methods. §9 discusses the
possibility of hypercritical accretion. §10 considers what we can learn from ob-
servations of post-CE systems; there we also compare observations of a recent
transient event, which may well have been produced by CEE, to the expec-
tations produced by CEE simulations. The conclusions, §11, include a list of
some promising directions for possible progress.

2 Main phases

It is convenient to break down the progression of an idealised CE event into
several distinct phases, where each phase operates on its own timescale (Pod-
siadlowski, 2001, see also Fig. 2):

– I: Loss of corotation
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Fig. 2 The main potential phases of a CE event prior to the envelope ejection or the merger.
This example is for a 1.6 M� red giant and a 0.3M� WD, using data from one-dimensional
hydrodynamical simulations in Ivanova (2002). Not all phases are expected to happen during
all CE events. The dashed lines represent locations at fixed mass coordinates, and the dotted
line shows the location of the inspiralling secondary.

During this stage a stable and probably non-eccentric binary, where the
rotation of the donor is also likely to be synchronized with the orbit, is
transformed into its complete antithesis – a spiralling-in binary.
The start of the spiral-in could be caused by, e.g.:

1. a dynamically unstable (runaway) mass transfer. This happens if the
donor, either due to its evolution or due to its immediate reaction upon
mass loss, expands relative to its Roche lobe (for more details see § 6).

2. an instability such as the Darwin instability (Darwin, 1879), or a sec-
ular tidal instability (Hut, 1980; Lai et al., 1993; Eggleton & Kiseleva-
Eggleton, 2001). The Darwin instability occurs when the spin angular
momentum of the system is more than a third of its orbital angular
momentum (see also § 6.2).

3. the reaction of the accretor leads to matter filling the binary orbit. For
example, if mass transfer proceeds at too great a rate to be accreted
by the compact companion, but the system is also unable to quickly
expel the mass, then a common-envelope is naturally formed. Potential
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cases include an envelope temporarily trapped around a neutron-star
being fed at super-Eddington rates (Begelman, 1979; Houck & Cheva-
lier, 1991; King & Begelman, 1999), or reincarnation of an accreting
white dwarf which tries to form a red giant (Nomoto et al., 1979, 2007);
or perhaps even in nova systems when the expansion of the nova shell
engulfs the companion.

The loss of corotation itself occurs on a dynamical timescale. Prior to that
moment, however, the stellar structure is strongly affected by the mass-
transfer history before the dynamical instability sets in. This preparatory
stage could last hundreds of years, from dozens of dynamical timescales to
a thermal time-scale (see § 6 and Podsiadlowski et al., 2002a).

– II: Plunge-in and its termination
A rapid spiral-in, during which the orbital energy is deposited in the en-
velope, drives its expansion and may lead to its dynamical ejection right
away, or to a rapid merger of both stars. This stage is purely dynamical
and is the best studied stage to-date. Typical hydrodynamical simulations
for CEE ending with a merger or with a binary formation are shown on
Figs.3 and 4, and for more technical details see discussion in § 7.

– III: Self-regulating spiral-in
The envelope may expand enough that the spiral-in slows down. In this
way a self-regulating state can be formed, in which frictional luminosity
released by the spiral-in is transported to the surface where it is radiated
away (Meyer & Meyer-Hofmeister, 1979). This is expected to happen, for
example, in some cases if the rate of spiral-in is determined by the local den-
sity in the region of the secondary: too little instantaneous heating means
that the local density rises, increasing the rate of spiral-in and therefore
heating (and vice versa). This phase is non-dynamical and operates on the
thermal time-scale of the envelope. How this difference in time-scale affects
the energetics of CEE is discussed in §3. Recent hydrodynamic simulations
of phase II have found non-local energy dissipation (Ricker & Taam, 2008;
Passy et al., 2012a); if those long-range effects continue to dominate beyond
the initial dynamical spiral-in then it is less clear whether a self-regulating
state is likely to form.

– IV: Termination of the self-regulating phase
The self-regulated spiral-in ends with the ejection of the envelope (e.g.,
via delayed dynamical ejection, Ivanova 2002, Han et al. 2002), or when
either of the secondary or core of the primary overfills its Roche lobe.
The second case can result in a (slow) merger (Ivanova, 2002; Ivanova
& Podsiadlowski, 2003b), but also provides a further route for envelope
ejection (Ivanova et al., 2002; Podsiadlowski et al., 2010). This phase takes
several dynamical time-scales.
In principle, a self-regulated spiral-in (‘phase III’) could also be followed
by another dynamical plunge (‘phase II’) if the mechanism maintaining
self-regulation somehow ends. That plunge could in turn be followed by
another self-regulated phase. It is not clear how unlikely such a repeat
is to happen in reality, but there seems to be no first-principles physical
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Fig. 3 Common envelope event with a 1.2M� early giant and 0.6M� MS star, resulting
in a merger of two stars. Simulation performed for this review by J. Lombardi and R.
Scruggs, simulated with 2.2× 105 SPH particles. For more technical details on the code, see
Gaburov et al. (2010) and Lombardi et al. (2011). Vizualization (images and on-line video)
are generated using SPLASH (Price, 2007).
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Fig. 4 Common envelope event with 0.88M� giant and 0.6M� MS star, likely leading to
the formation of a close binary. Shown are density slices in the orbital plane (left) and in the
perpendicular plane (right) at different times, each panel is 430 R� on a side. Simulations
were carried out with the gird-based code ENZO (O’Shea et al., 2005), and a resolution
of 2563 cells. The image was created for this review by J.-C.Passy. For more details on
simulations see (Passy et al., 2012a) and § 7.
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reason why the sequence of phases could not be I–II–III–II–III–[...]–IV in
some cases.

– V: Post-CE evolution
The final properties of the post-CE system are not necessarily set until some
time after envelope ejection. For example, the eccentricity of a surviving
binary can be changed by any remaining circumstellar matter, which might
well include a circumbinary disk. Thermal evolution of the remnant cores
might drive further mass transfer, and winds from the remnant cores could
widen the system. (For more details see § 10.)

3 The energy budget during CEE

The standard way to predict the fate of a common-envelope phase is known as
the energy formalism (van den Heuvel, 1976; Webbink, 1984; Livio & Soker,
1988; Iben & Livio, 1993), in which the energy difference between the orbital
energies before and after the event is compared with the energy required to
disperse the envelope to infinity, Ebind.

Ebind = ∆Eorb = Eorb,i − Eorb,f = −Gm1m2

2ai
+
Gm1,cm2

2af
(2)

Here ai and af are the initial and final binary separations, m1 and m2 are the
initial star masses and m1,c is the final mass of the star that lost its envelope
m1,env. As not all the available orbital energy can be used to drive the envelope
ejection, the concept of common-envelope efficiency is introduced, which is
parametrized as αCE. This is the fraction of the available orbital energy which
is usefully used in ejecting the envelope.

We could alternatively state the energy budget for CEE by writing that the
combined total energy of the immediate products of CEE cannot be greater
than the total energy of the system at the onset of CEE. This statement plus a
few approximations leads to Eq. 2. We also need to decide which physical con-
tributions should be counted in this energy budget, but if they are physically
complete then αCE should never need to exceed unity.

There are subtly different ways of writing the energy formalism. However,
all implictly assume that the ejected material departs with precisely the local
escape velocity, i.e. αCE = 1 does not only imply perfect energy transfer, but
also perfect fine-tuning. Since kinetic energy scales as the square of velocity,
matter would need to escape within a factor of ≈1.4 of the escape velocity for
αCE > 0.5 to be allowed.

A significant technical improvement in the application of this formalism
was the inclusion of a second parameter, λ, to account for the particular struc-
ture of each star in calculating Ebind for that star (de Kool, 1990; Dewi &
Tauris, 2000, 2001). Following this addition, the most commonly used form
for the energy formalism in population studies is now:

m1m1,env

λR1
= αCE

(
−Gm1m2

2ai
+
Gm1,cm2

2af

)
(3)
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Fig. 5 λ as a function of mass shown on example of 20 M� star when it has R = 750R�
(Z = 0.02, overshooting 0.2 of the pressure scale and no wind loss). For comparison shown
λg when only gravitational binading energy is taken into account (thin solid line) and when
internal energy is taken into account as well (thick solid line). Dotted lines correspond to
several possible core definitions, as discussed in §4.1.

This expression allows the two free parameters to be simply joined into a single
unknown, αCEλ, and this convenient combination can be commonly seen in
population synthesis papers. Of course, using a global value for the product
αCEλ does lose the advantage gained when using λ to describe the individual
binding energy of specific stars.

We note that different definitions of λ exist in the literature, depending on
whether the authors include only the contribution from gravitational binding
energy or also the internal energy of the star (see Fig. 5). The value of λ
can change greatly between stars, so using a global value in calculations is
unsatisfactory. An important physical question associated with this is how to
determine the boundary between the remnant core and the ejected envelope,
since λ can be extremely sensitive to that location (Tauris & Dewi, 2001); this
is discussed in §4.

Note that the envelope does not just need to become unbound from the
giant, as it must also be lost from the binary. Eq. 2, even when using detailed
binding-energy calculations for the giant star, neglects this. (One way of think-
ing about this is that the zero of potential energy for the envelope is redefined
between the initial and final states.) The appropriate correction would usually
be small, but it is often forgotten.
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When calculating Ebind, it is vital to know whether to include only the
gravitational terms. Webbink (1984) performed a full integration over both
the gravitational binding energy and the thermal energy of the gas, since they
are inextricably linked (but did not include recombination energy, for which
see §3.3.2), but early parametrisations only included the gravitational terms.
Physically it might be preferable for, e.g., the thermal energy of the gas to
be thought of as a potential source of energy rather than as something which
reduces the magnitude of the binding energy; in either case we need to think
about how internal energy might be converted to mechanical work if it is to
help eject the envelope. This depends partly on the timescales over which the
CE event happens, as we will discuss below. Likewise, those timescales help
to control whether other energy sources can contribute to the ejection besides
the orbital energy reservoir.

3.1 Applicability of the energy formalism: timescales and energy conservation

It is crucial to realise that the standard energy formalism (as in Eq. 2) was
introduced to explain a common envelope event as an event taking place on a
dynamical timescale. The formalism also presumes that only the energy stored
in the binary orbit, or in the initial internal energy of the common envelope,
could play a role in the envelope ejection. If the energy formalism is mis-
applied (for example, to quasi-conservative – thermal or nuclear time scale
– mass transfer) then artifacts like an apparent efficiency greater than unity
(αCE � 1, i.e. non-conservation of energy) could easily take place. This would
clearly be misleading and unphysical, but the situation could arise since this
approximation neglects some potentially-important energy sources and sinks.
Among the likely sinks are radiative losses from the common envelope and
energy stored in microscopic or macroscopic degrees of freedom (i.e. internal
energy of the matter and terminal kinetic energy of the ejecta). Prospective
sources are nuclear energy input – either from burning at the base of the
common envelope or from burning ignited at the surface of the accretor –
and accretion energy from matter retained by the companion star. Note that,
although mass transfer involves the liberation of gravitational potential energy
to heat the accreted envelope, this exchange of gravitational potential energy
for thermal energy neither introduces new energy sources nor new energy sinks.

The longer the CE phase lasts, the more opportunity there is for deviation
from the energetically closed system described above. For example if the event
takes place on a thermal timescale or longer, then energy lost in radiation
from the envelope’s photosphere might have to be taken into account. For
static equilibrium models we might feel justified in assuming that this loss
is balanced by heating from the stellar core, but this is unlikely to remain
true as the star’s structure alters during the CE event. Either the radiation
from the surface or heating from the core might be larger in different CE
events. Predicting future radiative losses in general would be challenging if
not impossible.
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Similarly, predicting the details of changes in the nuclear energy sources
during CEE is not straightforward, since their output might increase (see
§3.3.4) or fade away due to adiabatic expansion of the core in response to mass
loss. Qualitatively, however, it seems reasonable to expect that if the donor
star is in thermal equilibrium at the onset of mass transfer, then radiative
losses initially balance nuclear energy input. Then radiative losses seem likely
to grow relative to input from nuclear sources. This is because we anticipate
that the emitting area will probably increase whilst the nuclear sources, if any-
thing, seem most likely to decline in output, since the internal decompression
attending mass loss will tend to quench nuclear burning.

Qualitatively it is also possible to argue that accretion during CEE is not
commonly significant for non-degenerate companion. The common envelope
itself typically possesses much higher specific entropy than the surface of the
accretor, with the consequence that matter accreted by the companion star
reaches pressure equilibrium at the surface of that star with much higher
temperature, and vastly lower density, than the accretors initial surface layer.
A temperature inversion or roughly isothermal layer is expected to bridge this
entropy jump with the result that, over the duration of the CEE (which is much
shorter than the thermal time scale of the accretor), the accretor is thermally
isolated from the common envelope, while the common envelope itself becomes
increasingly tenuous. If this picture is correct then one would expect very little
net accretion onto a non-degenerate companion star (Webbink, 1988; Hjellming
& Taam, 1991). For degenerate companions, in this same context, the ignition
of nuclear burning at the surface of the accretor might be inhibited by the very
high entropy of accreted material – which would be extremely buoyant, and
difficult to compress to ignition conditions – although detailed simulations of
the process should be performed (see also §3.3.5 and §9).

It should be clear that it is very difficult to make any general statements
once the common envelope ejection is non-dynamical. Once the spiral-in or
the envelope preliminary expansion takes place on a timescale longer than dy-
namical, energy conservation in the simple original form above is not expected
to work.

3.2 Relating loss of orbital energy to heat input and outflow of the envelope

The energy from orbital decay is often assumed to thermalise locally, typically
by viscous dissipation in the region of the in-spiralling secondary. However, hy-
drodynamic simulations (Ricker & Taam, 2012) form large-scale spiral waves,
with tidal arms trailing the orbit of the binary. Spiral shocks transfer angular
momentum to the matter in the envelope. Furthermore, some of the energy in
those spiral shocks will be dissipated as heat a long way from the secondary.

It also seems possible that some matter is flung out as a result of these spiral
waves, i.e. orbital kinetic energy is directly transferred to the kinetic energy
of the envelope. If the spiral-in ends during the dynamical plunge-in, without
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entering a self-regulating phase, then a significant fraction of the orbital energy
transferred to the ejected envelope might not have been thermalised.

Avoiding a thermal intermediate stage would have the clear advantage
that the energy input is less likely to be radiated away, but might reduce the
chance that any other heat source could help with that part of the ejection.
If we could decide to what extent the envelope is ejected directly (by kinetic
energy imparted from spiral shocks) or indirectly (by heating and a pressure
gradient) – an apparently simple distinction – then it might help us conclude
how much the suggestions in the following subsection are likely to be helpful.

The results of Ricker & Taam (2012) are discussed in more detail in §7. Here
we note that ≈ 25% of the envelope is ejected during their dynamical plunge-in
calculations. The distribution of entropy production within the envelope may
well be different during any subsequent self-regulated spiral-in. The dominant
driving mechanism for further envelope loss might therefore also change.

3.3 Is orbital energy the only relevant source of energy?

Section 3.1 hopefully made it clear that there could easily be scope for ad-
ditional sources of energy to participate in CE ejection. In the following we
discuss several possibilities. The first is widely accepted, though physically
unproven to help, but the others are less normally included.

3.3.1 Internal Energies

It has become standard practice to include the internal energy of the envelope
in CE binding energy calculations. It is arguably physically clearer to think of
the internal energy reservoir as another energy source, and we shall do so here,
but it is also natural to modify the definition of Ebind such that it becomes
the sum of the potential energy and internal energy of the envelope. This has
typically been calculated using detailed stellar models via:

Ebind = −
∫ surface

core

(Ψ(m) + ε(m)) dm (4)

Here Ψ(m) = −Gm/r is the gravitational potential and ε is the specific internal
energy. If integrated over the whole star, Eq. 4 gives the total energy of the
star. However, when applied only to a part of the star, it is no longer formally
valid, in part due to how gravity is taken into account.

This contribution of internal energies was first explicitly applied by Han
et al. (1994), and can make a very large difference to the energetic ease of
envelope ejection during some phases of stellar evolution. Some authors only
allow a fraction of the available internal energy reservoir to contribute to the
ejection, in which case a second efficiency parameter, αth is used to denote the
fraction of the internal energy which is available to help eject the envelope.

Eq. 4 neglects the response of the core, which we discuss further in §4. Here
we note that, if the core expands during mass loss, this could do mechanical
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work on the envelope. So the binding energy should formally be calculated as
the difference between the initial (Ei) and final (Ef ) total energies of the star:

Ebind = Ei − Ef = −
∫ surface,i

centre

(Ψi(m) + εi(m)) dm

+

∫ surface,f

centre

(Ψf (m) + εf (m)) dm

(5)

where the integrals are now through the whole star, not just the envelope (Ge
et al., 2010; Deloye & Taam, 2010). For stars with degenerate cores it seems
unlikely that this correction is large, but it has not yet been definitively shown
to be unimportant.

It is not guaranteed that the internal energy should make a significant con-
tribution. The simplest physical version of this change seems to presume that
a significant part of the envelope expansion is subsonic, i.e. that pressure equi-
librium can be maintained. Otherwise the envelope’s gas would seem unable
to transfer its internal energy into envelope expulsion via thermal pressure.

Furthermore, some stars appear marginally unbound when their internal
energy is included in the binding energy calculation, yet they retain their
envelopes. Evidently, a net excess of internal energy over gravitational binding
energy is not a sufficient condition to unbind the envelope, even when this
situation is maintained over many dynamical timescales. Of course it is easy to
speculate that the CE event might somehow trigger the release of this energy.1

Arguments have been made that positive internal energy is the condition which
determines spontaneous envelope ejection for single stars, and that this helps
to match the intial-final mass relation (Han et al., 1994; Meng et al., 2008). If
this is the case, then at metallicities ' 0.02, stars with initial mass / 1.0M�
do not ignite helium (Meng et al., 2008).

3.3.2 Internal energy, thermal energy and recombination energy

It seems worth exploring the details of the ‘internal energy’ term included in
Eq. 4. In particular, we wish to highlight that the contributions used separate
into two distinct groups.

The natural components of internal energy are the thermal terms familiar
from kinetic theory, which we collectively label Uth. These measure the energy
of the matter relative to the state where stationary (cold) electrons and ions
are separated to infinity, i.e. the natural zero-energy state. This combines the
internal kinetic energy of the particles and the energy stored in radiation. Per
unit volume, we write:

Uth

V
= aT 4 +

∑
particles

∑
d.o.f.

kBT

2
(6)

1 At least some population synthesis calculations (see, e.g., Han et al., 2003) have found
better agreement with observations for particular classes of system by including the internal
energy reservoir.
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where the summations are over the particles (including molecules) present, and
their available degrees of freedom. (We have not written down the corrections
to the electron energies due to Coulomb interactions and degeneracy, which
are not likely to be significant in stellar envelopes.)

The second set of contributions arise because we expect that more energy
than Uth is available to be released from the matter in the envelope dur-
ing envelope ejection. The plasma can recombine and some atoms will form
molecules; those processes will release binding energy. This extra store of avail-
able energy is typically referred to as recombination energy, ∆Erecomb. It can
be calculated by adding the appropriate ionisation and dissociation potentials
for each ion and atom present, though it is usual to neglect dissociation of any
other molecule than H2. We note that recombination energy was suggested
much earlier to be a potential driving mechanism for the ejection of ordi-
nary planetary nebulae (Lucy, 1967; Roxburgh, 1967; Paczyński & Zió lkowski,
1968).

These two, very different, components have been mixed into ‘internal en-
ergy’ when discussing envelope ejection and stellar binding energies (see, e.g.,
Han et al., 1994, 2002). One of the reasons why this might be physically confus-
ing is that recombination energy does not contribute to the standard internal
energy which enters the virial theorem. This is also one of the reasons why
recombination energy is potentially helpful in CE ejection. For a stellar enve-
lope which is dominated by gas pressure such that the gravitational binding
energy is Uth/2 then, if ∆Erecomb = Uth, the star’s envelope would be formally
unbound even before CEE.

Their relative magnitude can be crudely estimated by comparing the value
of kB (i.e. 8.6× 10−5 eV K−1) with the ionisation potentials of hydrogen and
helium (79.1 eV/ion for He, 13.6 eV/ion for H). Assuming a 10:1 ratio of
hydrogen to helium (by number) gives an average of ≈ 20 eV available per
ion, in which case energy stored in thermal terms dominates energy stored in
the ionisation state of the plasma for temperatures above ∼ 2× 105 K.

So there seems very likely to be a strong contrast in where the energy
release from these two components will happen. The thermal terms, with spe-
cific energy ∼ 3/2kBT per particle in most giant envelopes, will store and
release energy at high temperatures, i.e. deep within the star. The release of
binding energy during recombination and molecule formation will take place
at relatively low temperatures.

The fact that the gravitational potential well is deepest far from the pos-
sible recombination zones seems worth pursuing. This might help explain how
internal energy can help CE ejection, even though stars which are marginally
unbound after calculating the integral in Eq. 4 (when including recombination
terms) are stable to perturbations. When the CE spiral-in has made the enve-
lope expand and cool enough then recombination would be triggered, perhaps
giving the final push to make a loose envelope unbound.

On the other hand, it is also possible that recombination energy is liber-
ated so close to the surface that it is is more easily convected to the surface
and radiated away. The helium recombination zones in red giants are typically
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well below the photosphere (at optical depths� 100), so if the giant structure
is roughly preserved during CEE then we do expect the energy from recombi-
nation to be thermalised. Even if the envelope above the recombination zone
became optically thin in the continuum, line-driven expansion might still be
favoured by remaining optically thick in the recombination lines. However,
there is very little mass above those recombination zones, and the recombina-
tion zones themselves tend to help drive convection.

The distinction between the recombination and kT components is not nor-
mally made. It may be that using a single αth parameter for all internal en-
ergy contributions is currently sufficient for use in population synthesis, and
we should certainly be careful about introducing yet another fitting parame-
ter. Nonetheless, if we aim to understand the physics underlying CEE then in
future work it seems sensible to aim to deal separately with the thermal and
recombination terms.

3.3.3 Tidal heating

Tidal heating is sometimes discussed as an additional effect which might help
the envelope ejection, and sometimes presumed to work more efficiently than
orbital energy taken into account in the energy formalism. This deserves a
special note of clarification. Tidal heating is clearly not an energy source but
rather a transfer mechanism, taking energy out of the binary orbit and stellar
spin.

The orbital energy reservoir is no larger than if tidal heating is ignored, and
that contribution has already been taken into account in the energy budget
even in the original energy formalism. In this respect then tidal heating obeys
exactly the same law of energy conservation as would dynamical spiral-in.

In principle there might be a small correction, due to the energy stored
in the stellar spin, whilst corotation is enforced. Energy stored in spins is
usually ignored in the energy balance equation. Yet it only seems likely to be
at all helpful if the giant is rotating faster than corotation, and is spun down
as tides take effect. This is the opposite of the strongly expected situation.
Indeed, taking into account spin energy in the overall energy budget seems
most likely to make the situation worse: some of the available orbital energy
will go into enforcing corotation.

Moreover, the tidal heating timescale seems likely to be longer than that
of the dynamical spiral-in. In which case, the star can lose more of this orbital
energy via radiation from the surface layers than if tidal heating was ignored.
So potentially tidal heating can decrease the efficiency if energy conservation
is applied using Eq. (2).

So, for several reasons, invoking tidal heating should not increase the
amount of energy available to eject the envelope. It should not result in αce > 1.
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3.3.4 Nuclear energy

Another energy source that could play a role in the envelope ejection is nuclear
fusion (Ivanova, 2002; Ivanova & Podsiadlowski, 2003b). If one considers a
binary that is doomed to merge, but does not yet merge during the dynamical
plunge-in phase, then during the self-regulating spiral-in phase a non-compact
companion (e.g., a main sequence star) will, at some point, start to overfill
its Roche lobe. This can be considered to be the end of the normal spiral-
in. Due to continued frictional drag from the envelope on the mass-losing
companion, the orbit continues to shrink, forcing the mass transfer to continue
and even to increase. A stream of hydrogen-rich material can then penetrate
deep into the giant’s core, reaching even the He burning shell and leading to
its complete explosion (Ivanova et al., 2002), since the released nuclear energy
during explosive hydrogen burning could exceed the binding energy of the He
shell (in massive stars this can be a few times 1051 erg). The rest of the CE
is much less tightly bound and is also ejected during the same explosion. This
leaves behind a compact binary consisting of the core of the giant and whatever
remains of the low-mass companion after the mass transfer. The companion is
not expected to remain Roche-lobe filling immediately after the explosion.

Such explosive CE ejection could both help a less massive companion to
survive the CE (this makes the formation of low-mass black-hole X-ray binaries
more plausible). It also seems to naturally produce a fast-rotating core which
has been stripped of both hydrogen and helium (Podsiadlowski et al., 2010).
The remnant star could then produce both a long-duration γ-ray burst and a
type Ic SN, helping to explain their observational connection.

3.3.5 Accretion energy

Another potential source of energy is the luminosity of accretion onto the
secondary during the common envelope phase (see, e.g., Ivanova, 2002; Voss &
Tauris, 2003). The Eddington luminosity would release ∼ 5×1045 ergs per year
per 1M� of the accretor. In which case, if a slow spiral-in lasts from 100 to 1000
years, the energy released through accretion could become comparable to the
energy release from the binary orbit via tidal interaction and viscous friction
(for the comparison of contributions in the case of different masses for a donor
and a giant, see Ivanova, 2002). In most cases, standard methods predict
that the available accretion rate for an inspiralling companion exceeds its
Eddington-limited accretion rate. However, hydrodynamical simulations found
that whilst the spiral-in is still dynamical, the commonly-used Bondi-Hoyle-
Lyttleton prescription for estimating the accretion rate onto the companion
significantly overestimates the true rate (Ricker & Taam, 2012), in which case
the contribution of accretion to the energy budget could easily be negligible
(see also §9).

The balance between orbital energy release and accretion luminosity should
change at different stages of the CE process. When a compact object is orbiting
inside the outer regions of the envelope of the giant (where the binding energy
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per unit mass is low and the spiraling-in timescale is long) then it seems easiest
for accretion energy release to dominate orbital energy deposition. A special
case of accretion energy release would occur if an inspiralling compact object
orbits deeply enough to cause the core to overfill its Roche lobe (Soker, 2004).
This might cause a brief, powerful release of accretion energy to help envelope
ejection. If that process occurrs, it might disfavour the formation of Thorne-
Żytkow objects (Thorne & Zytkow, 1975, 1977).

Accretion energy release might be able to help envelope ejection in ways
other than via heating. Kinetic outflows – jets – might be driven by accretion
onto an inspiralling compact companion. Soker (2004) argued that this should
be the expected outcome for an inspiralling WD or NS. Many parameters are
poorly determined for this entire process, but Soker argues that the jets can
blow hot bubbles within the envelope, causing some mass loss and potentially
slowing the spiral-in.

3.4 Does enthalpy help to unbind the envelope?

Above we have given some possible extensions to the canonical energy for-
malism. In particular, we have explored a set of potential additional energy
sources which might help unbind the envelope. However, it has recently been
proposed by Ivanova & Chaichenets (2011) that the standard framework is
seriously physically incomplete if the CE ejection happens during the self-
regulating phase.

In particular, Ivanova & Chaichenets (2011) argued that the condition
to start outflows is similar to the energy requirement in Eq. 4, but with an
additional P/ρ term, familiar from the Bernouilli equation:

Eflow = −
∫ surface

core

(
Ψ(m) + ε(m) +

P (m)

ρ(m)

)
dm . (7)

Since P/ρ is non-negative, the condition to start outflows during slow spiral-
in occurs before the envelope’s total energy become positive. As a result, this
“enthalpy” formalism helps to explain how low-mass companions can unbind
stellar envelopes without requiring an apparent αCE > 1. Although this con-
sideration may change the requirements for the energy budget, we emphasize
that this was derived without reference to the total energy budget for enve-
lope ejection, and it arises from a condition that separates stable envelopes
from envelopes that are unstable with respect to the generation of stationary
outflows.

This would be a radical change in the standard picture of CE energetics;
understanding this question is clearly important. An energetic debate over
whether the arguments in Ivanova & Chaichenets (2011) are correct is still
continuing, and we outline two opposing points of view below; there are others.
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3.4.1 Against: energy redistribution during dynamical envelope ejection

The P/ρ contribution in the Bernouilli equation expresses the fact that the
pressure gradient helps to accelerate the envelope outwards.

Hence the gas expelled from the outer regions carries more kinetic energy
than what would be calculated without the work of the pressure included.
But this energy comes at the expense of the energy of the inner regions of
the envelope. So the P/ρ term is important, but this only redistributes energy
rather than being a new, previously forgotten, energy source.

This can be demonstrated by a simple case. Consider a gas of adiabatic
index γ with a uniform initial pressure P0 and initial density ρ0, occupying
a cylindrical pipe in the region xl < x < xr (where xl is left and xr right,
corresponding to the inner and outer edges of the envelope). At t=0 the valve
at xr is opened.

This classic problem is solved in §99 of Landau & Lifshitz (1959). The
velocity of the gas at the right (outer) edge reaches a value of vr = 2Cs/(γ −
1), where Cs = γP0/ρ0 is the initial sound speed. Its specific kinetic energy
2C2

s/(γ−1)2 [e.g., (9/2)C2
s for γ = 5/3], is much larger than the initial specific

internal energy C2
s/γ(γ − 1) [e.g., (9/10)C2

s for γ = 5/3]. This ‘extra’ energy
comes at the expense of the energy of gas elements further to the left (i.e.
further inside). A rarefaction wave propagates to the left and reduces the
internal energy of the gas there. The further to the left a mass segment is, the
lower its velocity is.

The same qualitative flow structure holds for the ejected CE. The pressure
gradient accelerate the outer parts of the envelope at the expense of the inner
parts. The energy is unevenly distributed: the outer parts escape with a speed
much above the escape velocity, but the very inner parts might not reach the
escape velocity. They will fall back, unless extra energy is deposited to the
still-bound envelope segments.

This uneven energy distribution is clearly shown for a case where the energy
is deposited over a short time in the inner part of the envelope (Kashi & Soker,
2011). The inner parts of the envelope expand at velocities below the escape
velocity. They fall back to the binary system. If they contain sufficient angular
momentum, a circumbinary disk might be formed. Note, however, that this
may no longer be valid if the orbiting companion continues to add energy at
the base of the envelope, or if heat can flow outwards from the core on a short
enough timescale.

To maintain a negative pressure gradient (that accelerates outward) in the
inner regions during the ejection process, the bottom of the envelope must
gain sufficient heat from the core (which requires a sufficiently long timescale
for ejection), or by continued energy input from the binary (the conditions
on which are unclear). However, in the simple case where the envelope is
energetically isolated after the start of envelope ejection then the P/ρ term
only redistributes energy within the envelope.
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3.4.2 For: Outflows during self-regulating spiral-in

The arguments above assume that the ejection timescale is short, but the
derivation of Eq. 7 implicitly required that ejection happens on a thermal
timescale. The arguments which lead to the use of Eq. 7 rather than Eq. 4
were based on considering stellar stability criteria. The original assumption
for the energy formalism is that the energy required to eject the envelope
equals Ebind. This is based on either of two assumptions: that an envelope is
dispersed once its total energy Wenv > 0, or that an envelope with Wenv > 0 is
unstable. The connection between W and Ebind presumes that Ebind is in fact
Wenv. But Ivanova & Chaichenets (2011) argued that those assumptions are
not foolproof, as both a star with W > 0 can be kinetically stable (Bisnovatyi-
Kogan & Zel’Dovich, 1967), and a star’s stability condition against adiabatic
perturbations is not the same as having W > 0.

Ivanova & Chaichenets (2011) instead considered quasi-steady surface out-
flows, which would develop on the same timescale as it takes for the envelope
to redistribute heat released during the spiral-in, i.e. the thermal timescale of
the envelope. These outflows could only take place if slow spiral-in occurred,
not during a dynamical plunge-in phase. It is important to realise that such
steady flows do not behave the same way as the non-stationary flows described
in § 3.4.1. Since the base of the envelope could have time to take energy from
the core, the final total energy requirement for envelope ejection might be
more than that given by Eq. 7. However, the energy which might be released
by the reaction of the core cannot easily be evaluated at the start of the CE
phase; full mass-loss calculations would be needed.

3.4.3 Summary

Whether enthalpy helps with CE ejection may therefore be determined by the
timescale over which the ejection occurs.

Both arguments above might be correct in different binary systems. If the
envelope can be ejected during the dynamical plunge-in, then the envelope
may act as a closed energetic system (depending on the timescale of ejection
compared to the timescale of energy input from the binary orbit). But if that
rapid ejection doesn’t happen, and the spiral-in reaches the self-regulating
phase, then it may becomes possible for quasi-steady outflows to develop on
the thermal timescale of the envelope, and also for further heat input to come
from the core or from the binary orbit. In cases where the P/ρ term only
acts to redistribute energy within the ejected envelope then it might make the
overall ejection more difficult, in other cases it might be helpful. A priori it is
not clear which situation is more likely to be common.

Although it is still unclear to what extent enthalpy helps with CE ejection,
both sides of the debate above suggest that the P/ρ term might be vital in
determining the point which defines the depth from which the envelope is
ejected, i.e. the bifurcation point which separates the material which remains
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bound from the material which escapes. How to physically determine this
location will be addressed in the next section.

4 The end of the CE phase & the fate of the remnant

The previous section discussed the widely-used energy formalism and vari-
ations upon it. The main question which the energy formalism is trying to
answer is where does the spiral-in stop? That is: can we take the initial con-
ditions of a CE phase and predict the outcome? If a merger is avoided, what
does the remaining binary look like?

It is not sufficient to conclude that there is, in principle, sufficient useful
energy available to eject the envelope. Perhaps spiral-in does stop as soon
as sufficient gravitational potential energy has been released to unbind the
envelope, but this standard assumption is at best crude. Physically, it might be
that (almost all) the envelope is ejected, but the spiral-in of the companion still
continues until it merges with the core. (A post-CE binary might alternatively
merge during thermal relaxation following envelope ejection.)

Even more fundamentally, it is not trivial to define the boundary between
the ‘core’ and the ‘envelope’. Nor is it clear how close that boundary is to
the bifurcation point which separates the material which is ejected from that
which stays bound. So far we have treated these points as if they were well-
known, but they are not. These locations are needed in order to calculate Ebind

correctly, and different definitions can lead to large differences in CE outcome
(Tauris & Dewi, 2001).

4.1 Locating the bifurcation point

A number of possible criteria can be found in the literature which aim to define
the boundary between the remaining core and the ejected envelope. Some are
related to plausible definitions of the core mass, some attempt to predict a
natural bifurcation point on other grounds.

Obvious possibilities are the minimum possible core mass (the hydrogen-
exhausted core) and the maximum possible core mass (the transition between
the radiative zone of the H-burning shell and the bottom of the outer convec-
tive envelope). Equivalent descriptions of the latter point include: (i) where the
entropy profile has a transition between the increasing and flat parts (Tauris &
Dewi, 2001); (ii) where the effective polytropic index is discontinuous (Hjellm-
ing & Webbink, 1987). The proposed conditions can be grouped into three
main categories as follows:

1. connected to the nuclear energy generation:
– at the maximum nuclear energy generation within the H shell (Tauris

& Dewi, 2001)
– at the maximum nuclear energy generation plus a condition on the mass

of the remaining envelope, which itself is a function of the evolutionary
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status of the donor (for low mass red giants and asymptotic giant branch
stars, De Marco et al., 2011)

– where the nuclear energy generation falls below some threshold (De
Marco et al., 2011)

2. based on the chemical composition:
– the central mass which contains less than 10% hydrogen (Dewi & Tau-

ris, 2000)
– core is everything below the location where X = 15% (Xu & Li, 2010)

3. connected with thermodynamic quantities:
– where ∂2 log ρ/∂2m = 0 within the H-burning shell (Bisscheroux, 1998)
– where the function of the binding energy y = sinh−1(Ebind) has the

transition between a sharp increase and a fairly slow increase in the
outer envelope (Han et al., 1994)

– where the value of P/ρ is at its maximum within the H-burning shell.
This could be described as the point of maximum compression, or max-
imum sonic velocity (Ivanova, 2011).

– by using the entropy profile to predict the surface luminosity of any
possible remnant. Comparison of this predicted luminosity with the
current nuclear luminosity might suggest whether that potential rem-
nant would expand or contract (on a thermal timescale) after being
exposed.

Not all the definitions are applicable to every star: some only work for
low-mass giants or asymptotic giant branch stars, and some conditions can
not be found or determined uniquely in all the stars (e.g., the condition
∂2 log ρ/∂2m = 0 does not always give a unique answer for massive stars).
In Fig. 5 we demonstrate how different definitions of the bifurcation point can
work.

As the binding energy within the hydrogen shell greatly exceeds the binding
energy of the outer convective envelope, different core definitions for the same
star could lead to final binary separations different by factors of up to 100
(Tauris & Dewi, 2001; Ivanova, 2011, 2012); for the star illustrated in Fig. 5
the different core definitions predict envelope binding energies which vary by
a factor of 34. It is therefore of paramount importance to find the bifurcation
(core boundary) point as accurately as possible. For that, understanding the
physical reasons behind the existence of such a point is very important.

Most of the core definitions are simply ad hoc and do not carry much
meaning except that they could be used as fixed comparison points between
different population studies. However, some (e.g., the thickness of the remain-
ing envelope) are based on a known feature of low-mass giants (those which
have degenerate cores): the ability to re-expand their envelope back to a giant
structure if the remaining envelope mass exceeds some (small) value (Deinzer
& von Sengbusch, 1970). In general, the envelope mass that still re-expands
needs to be found for every core mass, but when adopting a criterion it is
usually approximated as some small fixed mass.
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The definition in which the core is determined by the compression point,
mcp, is in some sense a generalization of the case of low-mass giants described
above. Here the bifurcation is also based on opposite reactions of different
parts of the H shell to the very rapid mass loss; both immediately after the
envelope ejection and subsequently on a thermal timescale. However, this type
of divergence point for giant stars exists in all giants, including massive ones.
In the general case, it can be said that if mass is removed to below the di-
vergence point then the remnant contracts on its thermal timescale. On the
other hand, if mass remains above the divergence point then the star expands
during its thermal readjustment. During that thermal reexpansion the rem-
nant could either develop an outer convective envelope or experience strong
thermal pulses. This divergence point does not reliably coincide with any of
the other proposed bifurcation points described above.

Additional characteristics of that bifurcation point mcp have been found
(for more details see Ivanova, 2011, 2012), where the most important is that the
energy expense required to shed the envelope down to mcp is minimal, if both
the expansion during CEE and thermal readjustment after CE ejection are
considered. This is related to the question of whether the enthalpy formalism
for the energy balance should be applied (see 3.4 above), but it seems that mcp

should be the natural bifurcation point whether the ejection is on a thermal
timescale or dynamical. Hence it seems plausible that mcp could be the long-
searched-for and physically motivated point which defines where the spiral-in
stops.

4.2 Interaction with a post-CE disk

If not all of the envelope is ejected then, due to angular momentum conser-
vation and further interaction of the fallback gas with the binary system, a
circumbinary disk may well be formed (Kashi & Soker, 2011; De Marco et al.,
2011). Various numerical simulations have also suggested that a substantial
fraction of the envelope might stay bound (e.g. Sandquist et al., 1998; Lom-
bardi et al., 2006; Passy et al., 2012a). That circumbinary disk is expected to
have a thick structure (e.g. Soker, 2004, 1992; Sandquist et al., 1998) and its
interaction with the binary system may further reduce the orbital separation
(Kashi & Soker, 2011). In the context of the energy formalism it would effec-
tively mean that αCE � 1 and so in many cases this could lead to a merging
immediately after the dynamical phase of the CE. Kashi & Soker (2011) find
that this effective value of αCE < 1 (see also Ivanova, 2011) can explain the
recent findings of De Marco et al. (2011): they also found that the value of
αCE they deduce from observations is much smaller than what their numerical
simulations of the CE phase give (De Marco et al., 2008, 2009, 2011).
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5 The angular momentum budget

We have previously considered energy conservation as a constraint on CEE.
The total angular momentum of the system should also be conserved, but as
of yet this law has been less widely applied when studying CEE.

From first principles it seems surprising that angular momentum would
be the dominant factor in determining the final state of any CEE in which
the binary separation (a) is significantly reduced. This is because most of the
transfer of angular momentum is expected to happen at wide separations (J ∝√
a). In contrast, most of the gravitational energy release (∝ 1/a) should occur

later in CEE, i.e. when the post-CE separation is being finalised. Nonetheless,
the physical necessity of angular momentum conservation may be particularly
useful in understanding the early stages of CEE, and CE phases where a does
not significantly decrease.

5.1 The plunge

The need for a dynamical plunge-in at the very beginning of CEE can be
qualitatively understood by considering when the orbital energy and angular
momentum have to be shed from a spiraling-in binary. If we write the orbital
energy E of a binary in terms of its eccentricity e, angular momentum J , total
mass M , and reduced mass µ,

E = −G
2M2µ3(1− e2)

2J2
, (8)

we see that in the limit that dE ≈ 0 (with M and µ assumed constant),

de2

1− e2
≈ −2

dJ

J
. (9)

This suggests that, in the regime when the orbital energy E is almost constant
(i.e., at the start of the spiral-in), the binary’s eccentricity grows roughly as
fast as angular momentum J is transferred to the envelope.

The orbit is not expected to circularize until a/R . r
4/3
g , where R is the

radius of the common envelope, and rg its dimensionless radius of gyration
(then I = r2

gMR2 is the moment of intertia) and for giants r2
g ≈ 0.1.

5.2 The γ-formalism

Considering conservation of angular momentum might avoid some of the prob-
lems with trying to apply energy conservation that we outlined in §3. This gives
physical motivation for trying an alternative parametrisation. In this subsec-
tion we begin by considering such a parametrisation: the γ-formalism, in which
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angular momentum is considered to be the deterministic quantity (Nelemans
et al., 2000; Nelemans & Tout, 2005). The governing equation is:

∆Jlost

Ji
=
Ji − Jf

Ji
= γ

m1,e

m1 +m2
(10)

where Ji and Jf are the orbital angular momenta of the initial and the final
binaries, and m1,e = m1 −m1,c is the mass of the ejected envelope.

This has come to be widely used in BPS studies as an alternative to
the standard energy-based methods for predicting the outcome of general CE
events. However, the γ-formalism was first proposed in an attempt to explain
a narrower set of systems for which the standard energy prescription for CEE
appeared to be particularly problematic. For clarity we first address the more
restricted original set of cases, and in the next subsection (§5.3) we consider
the potential broader application of angular-momentum based parametrisa-
tions like the γ-formalism to predicting the outcomes of canonical CEE.

5.2.1 The origins of the γ-formalism

The γ-formalism was developed in order to explain some particular DWD
systems (Nelemans et al., 2000; Nelemans & Tout, 2005). These were thought
to have formed following two CE episodes, during the first of which the orbital
period might have increased. This requirement arose because the older WD in
those DWD systems has a smaller mass, and since radius and core mass are
coupled in low-mass giants, the orbital separation at the onset of the second
mass-transfer episode had to be wider than at the onset of the first one. The
energy formalism would not naturally describe a CE phase which widened the
binary orbit as appeared to have happened for these systems. Moreover, since
that relationship between giant radius and core mass allows the properties of
the pre-CE systems to be reconstructed, the γ-value for each unstable mass-
transfer episode can also be inferred (Nelemans et al., 2000). Intriguingly, that
reconstruction method found that all those observed DWD systems could be
explained by very similar values of γ. This led to interest in whether the narrow
range of inferred γ-values was related to a deeper meaning. In addition, it was
also suggested that Eq. 10 provides a better tool than the energy formalism for
predicting the post-CE properties of a wide range of binaries – using a single
value of γ for all occurrences – including those where the method originally
used to reconstruct the pre-CE properties of the DWD systems would not
work (Nelemans & Tout, 2005).

5.2.2 The sensitivity of the outcome to γ

The narrow range of γ produced by reconstruction techniques did suggest that
the method could be very valuable. The ability to predict the outcomes of CEE
for several disparate classes of system using one value of γ would make it a
powerful tool, and understanding the origin of a universal γ-value might help
to illuminate the physics taking place during CEE. However, Webbink (2008)
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explained that this may be understood as an intrinsic property of the formalism
itself rather than giving deeper insight into CEE. In this way both the success
in the initial fitting and later problems in the application of the γ-formalism
for other types of binaries may arise from the mathematical consideration of
how the γ-formalism (as described by Eq. 10) performs a transformation of an
inital binary into a post-CE binary. Specifically, a small range of γ is capable
of leading to a very wide range of outcomes: the mapping from the initial to
final separation is very sensitive to γ (see Webbink 2008 and Woods et al.
2010, and for a more formal mathematical explanation see Woods et al. 2011).
This naturally leads to reconstruction methods inferring a small range of γ,
as if the process itself is divergent, the inverse process is convergent. In this
case a wide range of outcomes (observed binary separations) was connected
to a narrow range of inputs (γ values). This sensitivity to small changes in γ
suggests that Eq. 10 should be at least reformulated.

5.2.3 The physical basis of the γ-formalism

Eq. 10 is a fitting mechanism for the outcome of a mysterious period of
canonically-unstable RLOF. Beyond this, there is no clear physical picture
of the underlying processes which the γ-formalism represents. One could in-
terpret Eq. 10 as describing the angular momentum which is carried away by
each particle of mass ejected from the system. However, the prescription only
gives the overall angular-momentum loss at the end of the mass-ejection phase;
it contains no assumptions about the specific angular momentum loss at each
instant. Nonetheless, as this review aims to understand the physics of CEE, we
direct the interested reader to §7.2 and 8.3, which discuss angular momentum
transport and loss in simulations of CEE. Hopefully our understanding of the
physics of CEE will soon improve enough to allow predictions to simultane-
ously take advantage of both energy and angular-momentum conservation.

Since the systems to which the γ-formalism was first applied are precisely
the ones with which the energy formalism struggled, it is clear that the γ-
formalism does not automatically describe a CEE phase where a limit from
simple energy conservation is expected. Replacing the energy formalism with
a different parametrisation does not solve the apparent physical problem if
energy generation during CEE is required to form a particular post-CE sys-
tem. Some systems predicted by the γ-formalism can be described as having
apparently violated energy conservation during their formation if only orbital
and thermal energies are available. This suggests that the timescale of the
ejection in the γ-formalism is longer than the thermal timescale of the stellar
envelope, which makes it more plausible that an additional energy source –
such as the star’s own fusion energy – could be used (see §3.1). We stress that
introducing Eq. 10 does not solve the underlying issue in the formation of the
DWD binaries (i.e. exactly what happened during the first MT episode) to
which it was first applied, even if it was an effective parametrisation of the
outcome.



Common Envelope Evolution 35

5.2.4 Resolving the problem of DWD formation with mass-transfer stability?

The proposal of the γ-formalism highlighted a set of mass transfer episodes
which apparently led to orbital expansion via CEE. However, an expanding
orbit – as required to explain the DWD systems which the γ-formalism was
first used to parametrise – can be a consequence of stable mass transfer. The
first Roche-lobe overflow episode in the formation of those DWD systems was
not necessarily unstable, and hence did not necessarily lead to CEE (as recently
argued by Woods et al. 2012). In this case the progenitor systems that form
DWDs are different to those that form DWDs via CEE and the γ-formalism.2

This means that use of the γ-formalism does not substitute for following the
MT episode in detail. Further study is required to finally determine which
systems form DWDs, but the existing work related to the formation of these
systems should certainly remind us that understanding mass-transfer stability
is as important as understanding CEE itself.

5.3 Angular-momentum based parametrisations of classical, inspiralling CEE

As noted previously, angular momentum is probably the most natural con-
served quantity to consider when the binary separation does not significantly
decrease. That condition does apply to the systems for which the γ-formalism
was developed. However, the majority of canonical CEE cases involve a major
spiral-in; indeed, that reduction in separation was the serious problem which
CEE was invented to solve. Nonetheless, since angular-momentum conserva-
tion is physically true it seems worth considering whether a formalism similar
to the γ-formalism could be used for all CEE events.

Moreover, numerous population synthesis studies have already adopted the
γ-formalism as an alternative way of predicting the outcome of general CE
phases (normally only to compare with the standard α–λ prescription). Hence
it is important to consider whether such use is likely to lead to undesirable
outcomes. A simple test finds that blanket use of the standard γ-prescription
with a single value of γ and a typical initial binary population leads to ap-
parent energy input in a large fraction – roughly half – of the CE events
that avoid merger.3 If the γ-formalism – or a similar angular-momentum-
based prescription – becomes the standard way to predict outcomes of CEE

2 The mass-transfer phases calculated in Woods et al. (2012) were previously thought to
be dynamically unstable for two reasons. Firstly, no realistic mass-transfer calculations were
performed and only simplified radius-exponents in the adiabatic approximation were used
to evaluate the stability (see Woods & Ivanova 2011 for why the adiabatic approximation is
imperfect). Secondly the mass-transfer was considered to be fully conservative even though
the transfer rate may exceed the Eddington limit of the accretor.

3 Using StarTrack, we find that ≈1/2 of surviving post-CE binaries end with apparent
energy input for γ of 1.5 or 1.75, and over 1/3 of them when γ = 2. We considered the
population of pre-CE binaries at the time of their first dynamically-unstable RLOF, then
determined the outcome predicted by Eq. 10 for each system. If the CE event does not
lead to a merger, we analyzed which of the post-CE binaries have more orbital energy than
they did before the onset of CEE. The initial population took primary stars from 1–100
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in population synthesis then this high fraction of events which require unex-
plained energy input should recieve greater attention. We emphasize that any
purely angular-momentum-based prescription is a fundamentally different way
of treating CEE from one where the outcome is guaranteed to be limited by
the available orbital energy. The γ-formalism isn’t only an alternative choice
of parametrisation; it is also a qualitatively different picture.

5.3.1 Angular-momentum-based fitting for CE with significant spiral-in

Motivated by the above, we now analytically examine the behaviour of an
angular-momentum based prescription for situations with significant spiral-in.
We do this by taking the γ-formalism and adding the additional condition that
the orbital energy decreases during CEE.

If we assume circular, Keplerian post-CE orbits then for each such CE
event we can define two limiting values of γ:

– γE The value of γ for which Eq. 10 predicts that the post-CE orbital energy
will be higher than the pre-CE orbital energy.

– γM The value of γ for which Eq. 10 predicts that the system will merge.
We define this cautiously, such that for γM all of the orbital angular mo-
mentum of the system is carried away by the envelope ejection; mergers
could happen for less extreme values than γM.

From the above definitions can be derived a relation between γE and γM,
specifically:

γE

γM
= 1−

√(
Mc

M1

)3(
M1 +M2

Mc +M2

)
(11)

where M1 and M2 are the pre-CE masses of the components and Mc is the
core mass of the primary star (i.e. Mc = M1 −Mej, where Mej is the mass
ejected during CEE). The above can be rewritten as:

γE

γM
= 1−

(
(1− x)

3/2
(

1− x

k

)−1/2
)

(12)

where x = Mej/M1, i.e. the fractional mass of the pre-CE primary star which
is ejected during the CE event, k = 1+(1/q) and q = M1/M2 is the mass ratio
of the system prior to CEE. Note that k is a weak function of q for the range
of likely cases at the onset of CEE (i.e. from q � 1 to q ≈ 1, which correspond
to k ≈ 1 and k ≈ 2). For those two limits:

– When k ≈ 1 (i.e. q � 1) then Eq. 12 simply reduces to (γE/γM) ≈ x.
– When q = 1 then the binomial expansion, truncated after the first two

powers of x, gives (γE/γM) ≈ (5/4)x− (3/32)x2.

M� following a Kroupa IMF, with flat distributions for both the initial mass ratio and the
logarithm of the initial orbital period, i.e. typical assumptions.
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The above indicates that the range of γ between γE and γM is dominated by
the fractional mass ejection from the primary. Cases where the surviving core
mass is a small fraction of the donor mass – in which case x is a large fraction
of unity – are expected to be common. It should be clear that in such systems
the range of γ between γE and γM is a small fraction of γM. This is related to
the more general sensitivity of the formalism discussed in §5.2.2.

Appendix B uses model stellar structures to numerically demonstrate the
limited range between γE and γM for some unexceptional cases. Importantly,
the range of values between γE and γM is expected to differ from system to
system (see also Webbink 2008, Woods et al. 2010, and Woods et al. 2011).
Hence a single global value of γ seems unlikely to be effective in describing all
CE phases for which there is significant spiral-in and significant mass ejection.

5.3.2 Wider application of the γ-formalism

As noted previously, the specific successes of the γ-formalism have led to some
population synthesis studies adopting it as a general alternative to the en-
ergy formalism. Some comparisons of the observed populations of post-CE
binaries with population synthesis models have found inconsistencies with the
γ-formalism when applying it to general CE events (see, e.g., Davis et al., 2010;
Zorotovic et al., 2010). However, we have argued elsewhere against drawing
over-strong conclusions about the process of CEE from population synthesis
alone, and the same principle should apply here.

Nonetheless, use of the γ-formalism to make predictions for systems other
than those for which it was calibrated should be done cautiously. This is espe-
cially true for systems which undergo serious spiral-in, or for which the final
orbital energy is lower than the initial; then the outcomes predicted will be
highly sensitive to the chosen value of γ, as explained above. In particular, it
seems very unlikely that a single value of γ could apply to all CE phases which
occur in the Universe. Avoiding unexplained energy input in a significant frac-
tion of post-CE binaries requires fine-tuning of γ for particular cases. We have
made clear that the parameters in the energy formalism are also likely to be
different for different systems, hence such variation in γ is not a fundamental
argument against the use of a parametrisation based on angular momentum,
but it is a strong practical warning to those who make and interpret BPS mod-
els (especially combined with the high sensitivity of the current γ-formalism
to changes in γ).

Overall, the classes of CEE to which the γ-formalism might currently be
well-suited are almost certainly limited. Population synthesis modellers who
intend to employ the γ-formalism should consider this point. The recent work
by Toonen et al. (2012) adopts a set of restrictions which may be useful guide-
lines: they do not apply the γ-prescription for a second episode of dynamically
unstable mass transfer, nor when the companion star is a compact remnant,
nor when the dynamical instability is due to a tidal instability.
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6 The onset of the common-envelope phase

The onset of the common-envelope phase is not immediate. This process in-
volves both the time during which unstable RLOF is turning into the common-
envelope phase and also the recent pre-RLOF evolution of the donor.

6.1 Enhanced mass loss before RLOF

The donor might lose a significant amount of its mass during the approach
to RLOF, i.e. before the actual RLOF starts. Mass lost through a tidally-
enhanced wind was proposed by Tout & Eggleton (1988) to explain the ob-
served mass-ratio inversion in some RS CVn binaries. In addition, very mas-
sive stars that approach the Humphreys-Davidson limit could be subject to
enhanced winds, and even spontaneous envelope loss (e.g., Vanbeveren, 1991;
Eggleton, 2002). AGB superwinds might also be enhanced or triggered by the
presence of a close companion (e.g., Chen et al. 2011, in prep). One of the driv-
ing mechanisms for AGB superwinds is likely connected to pulsations, and such
pulsations can be either amplified (e.g., due to tidal interactions) when the star
is close to its Roche Lobe (RL), or strong pulsations can start earlier than it
would be in a case of a single star. A similar effect might happen for stars
which are close to other pulsation instabilities, such as the Cepheid instability
(Eggleton, 2002). Another potential driving mechanism for enhanced winds
can be connected to the rotational velocity of the star. The rate-of-rotation
of the donor is likely to increase prior to RLOF due to synchronization of
the stellar spin with the orbit via tidal interactions (Bear & Soker, 2010). So
it seems possible that during this pre-RLOF stage a star might lose mass at
the same rate as AGB superwinds, 10−4M�yr−1 (or at an even greater rate
for massive stars). This mass loss occurs without loss of orbital energy (i.e.
without reducing the semi-major axis of the orbit before the onset of the main
CE phase). Note, however, that wind loss will tend to widen the binary, which
may lead to avoidance of CEE; it should certainly increase the stability of
RLOF against CEE.

The obvious consequences of any enhanced mass loss prior the onset of
CE, compared to evolution as a single star of the same mass, is that both the
mass of the envelope and its binding energy can be decreased due to matter
re-distribution. This may lead to an apparent increase of αCE for the overall
sequence of events. The binding energy decrease at the tip of the AGB is even
argued to lead to a state when the envelope becomes almost unbound or blown
away by a superwind, and a binary may even completely avoid the formation
of a common envelope (Chen et al., 2011). Even after the secondary enters the
giant envelope, the rotational velocity could be high enough to keep inducing
an enhanced mass-loss rate. Significantly more systems might survive the CE
phase if these preceding spin-up and mass-loss phases were taken into account.
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6.2 Duration of tidal interactions before dynamical instability

Generally we can estimate that tidal interaction becomes significant when
the orbital separation is two-three times larger than the giant radius: see,
e.g., Portegies Zwart & Meinen 1993 for immediate tidal interactions. Due to
continous tidal interaction during the time a donor evolves near the tip of the
RGB or AGB, τev, a giant donor is argued to be tidally spun-up even at larger
separations (Soker, 1996):

amax ' 5Rg

(
τev

106yr

)1/8(
M2

0.1M�

)1/8

F (Lg, Rg,Menv), (13)

where F (Lg, Rg,Menv) is a slowly varying function of the primary’s luminos-
ity, radius, and envelope mass, respectively. Note that there are a number of
uncertainties and simplifications within that expression. It is based on Zahn’s
impressive theory of tidal spin interactions (Zahn, 1977, 1989), but the numer-
ical factor should be treated with caution, as it is often found that this must
be tuned to match observed binary systems. However, the important point
here is qualitative: amax increases with the mass of the companion.

In order to avoid the onset of CEE after synchronization has been achieved,
the system needs to remain stable against the Darwin instability (Darwin,
1879). Qualitatively, this instability is a consequence of the fact that removing
angular momentum from the binary orbit causes the orbital period to decrease,
i.e. spin faster. Hence, in a tidally-locked binary, if the giant extracts angular
momentum from the orbit (e.g. by expanding and thereby changing its moment
of inertia) then tidal locking forces it to extract additional angular momentum
from the orbit in order to stay synchronised (since the orbital period will itself
have been decreased by the star’s initial demands). It should be clear that
if the moment of inertia of the binary orbit is far larger than the moment of
inertia of the individual stars then this exchange of angular momentum will not
destabilise the system. However, in some cases there are no stable solutions, i.e.
if the attempts by the orbit to supply the spin angular momentum demanded
by the star are unable to lead to equilibrium. When such a runaway occurs then
the stars merge (i.e., in this case, enter CEE). Quantitatively, the condition
to avoid that instability – assuming that the system is tidally-locked – is that
the orbital moment of inertia Iorb be more than 3 times Ig the giant’s moment
of inertia Iorb > 3Ig = 3r2

gyrMenvR
2
g (Hut, 1980). Here rgyr is the gyration

radius of the giant and is usually about 0.1. We have also made the usual
simplifying assumption that the moment of inertia of the giant is much larger
than that of the other star. A more massive companion makes the system
more stable with respect to Darwin instability. As the giant’s radius grows,
the binary system becomes less stable; for a discussion of the competition
between orbital separation increase due to mass loss and orbit decrease due to
tidal interaction, and the possible onset of the Darwin instability, see Bear &
Soker (2010).

It follows, that more massive secondaries could be more efficient in bringing
the giant envelope to synchronization before entering the CE phase. They are
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also more efficient in maintaining this stage for a long time. During that time
the giant loses more of its envelope in the wind. When the CE finally occurs,
as the wind carries angular momentum and/or the giant expands, there is
less mass in the envelope. More massive secondaries would therefore tend to
have less mass to expel during the CE phase, and so would end the CE phase
with a wider orbital separation. In the energy formalism a larger final orbital
separation indicates a larger value of αCE. Because of this, massive secondaries
could be expected to appear to cause larger values of αCE. However, more
massive companions would be expected to have larger post-CE separations
even with the same αCE, simply since they carry more pre-CE orbital energy.
So the post-CE observational signature of these tidal interactions is not unique.

Nonetheless, this prediction based on pre-RLOF tidal interactions is in fact
contrary to that deduced from observations by De Marco et al. (2011), who find
that there is a possible negative correlation between the mass ratio of the two
stars and the value of αCE. Namely, for larger M2/Mg the average value of αCE

is smaller, as also found by Davis et al. (2011) (although Zorotovic et al. 2010
don’t find indications for a dependence of α on the mass of the companion;
also, there are enormous observational selection effects favouring short orbital
periods). It can be noted that the final separations from observations are all
low, irrespective of the mass ratio. De Marco argues that, without needing to
make complex reconstructions, this already tells you that the low mass systems
have a larger α in the energy formalism.

Soker argues that a possible reconciliation of the apparent contradiction
between the finding of De Marco et al. (2011) and his estimate may come from
the distribution of initial binary parameters (e.g., more massive secondaries
could reside closer to their parent star and so they enter the CE phase at
earlier epoch). However, so far there is no observational evidence for such dis-
tributions. Alternatively, the difference in effective αCE could arise because the
difference in mass affects the physics of the CE ejection. For example perhaps
CEE involving more massive companions occurs on a shorter timescale; that
could affect the energy redistribution within the envelope to make complete
envelope ejection more difficult (see the discussion in section 3.4). And, finally,
it may simply mean that tidally induced synchronization before RLOF does
not play a significant role in the outcome of CEE.

6.3 RLOF and the development of dynamical instability

Once a model donor star overfills its Roche lobe, a theoretical criterion is
usually applied to try to determine whether the mass transfer is dynamically
unstable. If the RLOF is dynamically unstable, it is usually expected to lead
to CEE. However, some special-case systems do exist which we would expect
to have experienced dynamically unstable mass transfer seem to have avoided
CEE (see the discussion in Podsiadlowski et al., 1992).

The standard analysis of the stability of mass transfer compares the dif-
ferential reaction of the Roche lobe to mass transfer to the reaction of the
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donor to mass loss on different timescales (see Hjellming & Webbink, 1987).
For the purpose of this analysis, the donor has often been treated as a com-
posite polytrope (Hjellming & Webbink, 1987; Soberman et al., 1997a). The
donor’s reaction is mainly a function of whether the envelope is convective or
radiative. However, it is wrong to forget that the existence of a core can make
a substantial difference to mass transfer stability (Hjellming & Webbink 1987;
Soberman et al. 1997a; unfortunately this is not an unusual misconception –
see, e.g., the discussion in Podsiadlowski 2001 and references therein). As an
example, a commonly used critical mass ratio (qcrit) for the stability of RLOF
from convective donors with isentropic envelopes is qcrit ' 2/3; this value is
only relevant for fully convective stars, as stars with cores are more stable
(Hjellming & Webbink, 1987; Soberman et al., 1997a).

A polytropic equation of state has also been used to derive an analytic
solution for the mass transfer rate during the lead up to runaway (Webbink
& Iben, 1987; Webbink, 2010). This phase is difficult to treat self-consistently
with a full stellar evolution code so, although the assumptions used are highly
idealised, this solution may be of use in setting up the initial conditions of
hydrodynamic simulations of CEE.

Recent progress has been made in studying the problem of mass transfer
stability using the adiabatic approximation but using realistic stellar struc-
tures rather than polytropic stellar models. (Ge et al., 2010). These studies
have preliminary shown significant differences to the old criteria for when the
instability occurs, as well as considerable changes for the same star at dif-
ferent points along the giant branch. The more detailed models show greater
stability, with qcrit as large as 10 for some of the stars (Ge et al. 2011, in prep).

Nonetheless, such work carries the main disadvantage of old studies: the
adiabatic approach literally means that the reaction of the star is studied by
keeping the entropy profile (at each mass coordinate) fixed. The thermal ad-
justment time of the outer layers of the star is so short that, even when the
mass transfer is taking place on timescales shorter than the global thermal
timescale of the star, the entropy profile within the star can deviate consid-
erably during mass transfer from the fixed profile used in adiabatic codes
(Podsiadlowski et al., 2002b; Woods & Ivanova, 2011; Passy et al., 2012b). In
particular, the superadiabatic spike near the surface of the star is not lost in
the way that the adiabatic approximation predicts; some of the strong expan-
sion predicted in adiabatic codes is suppressed by retaining this spike.

A further stabilising effect present in reality but absent in adiabatic codes
is the finite time taken for the development of the dynamical instability after
the start of mass transfer (see the discussion in Han et al., 2002). The critical
mass ratio also depends on how conservative the mass transfer is, where less
conservative mass transfer leads to more stability and higher qcrit (see, e.g.,
Podsiadlowski et al., 1992; Kalogera & Webbink, 1996; Soberman et al., 1997b;
Han et al., 2001; Woods et al., 2012). The dynamical stability of RLOF could
also be increased by tidal spin-orbit couplings (Tauris & Savonije, 2001).

Adiabatic codes are elegant, and provide a clean & well-defined answer
about when instability occurs. Adiabatic codes could also be modified by
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adding artificial thermal relaxation, essentially placing a superadiabatic blan-
ket on top of an adiabatic envelope. Indeed Ge et al. (2010) found that in
this case the reaction of the star is typically calculated to lie between the
predictions from detailed stellar codes and those produced by adiabatic cal-
culations. However, any modern detailed stellar/binary evolutionary code can
also provide qcrit, without needing to resort to the adiabatic approximation.
For example, Han et al. (2002) explicitly calculate values of qcrit for use in
their own population synthesis calculations; Chen & Han (2008) also use a full
stellar evolution code to investigate qcrit in detail. Of course both approaches
are approximations, and therefore potentially misleading, since neither type
of code is really treating the full three-dimensional problem. It may even be
that the structure in the vicinity of the inner Lagrangian point is closer to the
predictions from adiabatic codes, since there the superadiabatic layer may not
be able to rebuild itself (for studies of the flow in this region, see Paczyński &
Sienkiewicz 1972 and figure 3.6 of Eggleton 2006).

6.4 3D and hydrodynamic effects

Fully understanding the onset of CE might well require the inclusion of physics
beyond standard stellar calculations. There are two important factors affecting
how dynamically unstable the initial phase will be, according to current studies
by means of 3D hydrodynamical simulations:

– how strongly the donor is in or out of corotation with the binary
– what is the value of the total angular momentum

These two issues are worthy of further consideration. If the initial con-
ditions for hydrodynamic CE simulations are such that the donor is not in
corotation with the binary, or if the companion is simply placed at the surface
of the donor, then the dynamical plunge-in phase is being forced to start ar-
tificially quickly. In both of those cases then the system as a whole is missing
some of the angular momentum which it should posess (for companions mas-
sive enough that we expect them to spin-up the giant’s envelope). Neither of
the approximations reflects the real situation, and the consequences are not
yet well understood.

Unfortunately such initial conditions have been commonly used in pub-
lished simulations, but the degree of non-corotation varies from one research
group to another. If we compare two cases: one with 95% of the appropriate
orbital velocity required for corotation in Ricker & Taam (2012) against 0% as
in Passy et al. (2012a), it seems that the more rapid intial rotation may help to
eject more material to infinity from the system. Conversely, less rotation could
lead to more material being trapped, perhaps in a bound circumbinary disk
(this comparison is considered in more detail in §7). Determining what the
angular momentum distribution is in a binary system when the donor overfills
its Roche lobe is an important question in properly treating the initial stages
of CEE, and is important input in order to make the most of computer time.
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6.5 Onset of CE from dynamically stable RLOF

It is possible that mass-transferring binaries which do not experience CEE fol-
lowing a standard dynamical instability are still dragged into CEE. This might
happen because the accretor cannot accept matter at the rate at which it is be-
ing transferred, and also the system as a whole cannot eject the matter rapidly
enough. In this case a de facto common envelope could be built up around the
stars. Until relatively recently it was thought that thermal-timescale mass
transfer in X-ray binaries could lead to CEE in this way. However, it is now
acknowledged that Cygnus X-2 passed through such a thermal-timescale phase
and avoided CEE (King & Ritter, 1999; Podsiadlowski & Rappaport, 2000;
Tauris et al., 2000; Kolb et al., 2000). Another relevant system in this context
is SS433, which seems to be transferring matter at & 10−4M�yr−1 but – so far
– appears to have avoided CEE (Blundell et al., 2001; Podsiadlowski, 2001).

Double-core evolution is a special case of this (Brown 1995, see also Dewi
et al. 2006). In this case the CE phase ejects the envelopes of both stars.
Unusually, it requires the mass ratio to be close to 1 (typically within a few
percent). If the primary then overfills its Roche-lobe as a giant, then accretion
onto the secondary might cause it to expand and also overfill its Roche-lobe.
This leads to a joint CE, in this case formed by matter from both stars, and
inspiral of both cores.

7 Comparison of state-of-the-art 3D simulations

3D hydrodynamic simulations of common-envelope evolution have been carried
out by Ricker & Taam (2012) (hereafter RT) using the grid-based, adaptive
mesh refinement (AMR) code FLASH (Fryxell et al., 2000) and by Passy et al.
(2012a) (hereafter PDM) using the grid-based code Enzo (O’Shea et al., 2005)
in single grid mode and the Lagrangian code SNSPH (Fryer et al., 2006).

The star simulated by PDM was a 0.88 M�, 85 R� giant with companions
in the mass range 0.1 to 0.9 M�, and RT considered a 1.05 M�, 31.6 R�
giant with a 0.6 M� companion. As the initial masses are similar, the main
difference between the initial conditions chosen for these simulations were the
initial conditions for the rotation, where RT considered a donor which is almost
in corotation with the orbital motion (spun up to 95% of the orbital angular
velocity), whilst PDM took the case when the giant is not rotating at all (see
also §6.4).

In PDM, the grid-based models with 2563 resolution and the Lagrangian
500 000 particle models reach essentially the same conclusions, which gives
some confidence that there are no major numerical issues in the simulations.
The effective resolution of the RT simulations was 20483.
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7.1 Final separations and envelope ejection

The dynamical in-fall phase lasts of the order of 50 days in RT and 10 to
100 days in PDM, and the final separations are between a few and ∼30 R�.
The final orbital separation in RT are few times smaller than the PDM sim-
ulations with the same companion mass. However for both groups these final
separations are systematically larger than the observed separations of post-
common envelope binaries (De Marco et al., 2011; Zorotovic et al., 2010). One
explanation is that the phase immediately following the dynamical in-spiral
phase further alters the post-common envelope binary separation. Kashi &
Soker (2011) suggested that even a small amount of fall-back mass can create
a circumbinary disk which can then tighten the immediately-post-CE binary
orbit through tidal interactions.

In the RT simulations about 25% of the envelope is ejected. The PDM
simulations stop at the end of the dynamical spiral-in, at which point most of
the envelope is still loosely bound – only a small fraction of the stellar envelope
is unbound. If this result is physical then the next phase of evolution seems
likely to be an in-falling envelope that will then form a disk. The fall-back
disk envisaged by Kashi & Soker (2011) is far less massive than the mass
of the fallback material in the PDM simulation (at only 1–10% of the total
envelope mass). The difference in the amount of ejected matter may simply
be consistent with RT producing a shorter final binary period. The reason
why RT and PDM systematically disagree about the final orbital period is not
clear, though different initial conditions seem a likely reason.

7.2 Angular momentum

The main difference in initial conditions between RT and PDM is the amount
of angular momentum in the giant donor envelope before the spiral-in phase.
Since this should affect the speed of the initial plunge, such a difference could
easily lead to differing outcomes, perhaps playing an important role in deter-
mining the ejection efficiency. Yet the simulations of Sandquist et al. (1998)
found that primary spin did not substantially alter the results for their heavier
primaries, though for smaller mass ratios than considered by RT. Tidal spin-
up of the primary should be efficient for larger companion masses, while for
the lower masses (e.g., M2 ≤ 0.05 M�) it might make little or no difference
and the primary could be spinning slowly. So, even if pre-CE spin is a factor
in ejecting the common envelope, it could apply only to some interactions.

Nonetheless this pre-inspiral stage should be considered carefully, as it
seems likely to be important in affecting the simulations. In PDM the com-
panion is always placed on the primary’s surface with a Keplerian velocity,
where the in-spiral starts immediately. Clearly this is unrealistic, since the
companion would interact with the giant tidally and through wind accretion
for a reasonably long time before falling in. What is not clear is how this initial
phase influences the outcome of the interaction. A comparison test ran with
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the companion placed 5% farther out or with an orbital velocity slightly larger
than the Keplerian value in Passy et al. (2012a) did not alter the final results,
though it resulted in marginally larger eccentricity.

We note that RT find that the outflowing matter carries significant angular
momentum. That is, the highest velocity components are in the tangential
direction rather than in the radial direction. PDM, on the other hand, find
the opposite; this difference should be pursued further.

7.3 Variations with initial mass ratio

Sandquist et al. (1998) found that the fraction of ejected mass increases with
mass ratio (companion mass to red giant) of the system. The result found
in RT (for systems with mass ratios closer to unity) are consistent with this
trend.

In PDM, lower mass companions take longer to in-spiral, in particular
initially, and come to rest at smaller orbital separations, as one might expect
(although note that these are not the final separation as the envelope is still
bound). However, not only do the observed post-common envelope systems
cluster at smaller orbital separations, these separations do not appear to be a
function of mass ratio nor secondary mass.4 The observations therefore suggest
that more massive secondaries (i.e. systems with larger mass ratios, q) are less
efficient at unbinding the envelope and so they sink deeper into the envelope
despite having plenty of orbital energy to deliver. This is in line with what was
determined by De Marco et al. (2011) and independently by Davis et al. (2011).
Alternatively, more massive companions might suffer further in-spiral after the
envelope is ejected due to one or more alternative physical mechanism(s).

7.4 Energetics and αCE

RT find that, for their hydrodynamic transfer of orbital energy to the enve-
lope, αCE is ∼ 25% based on the amount of matter ejected. PDM deemed it
inappropriate to calculate the values of αCE when the envelope has not been
ejected. Clearly further energy sources might help envelope ejection if they
were included (see §3). One obvious candidate for inclusion in simulations is
the reservoir of recombination energy; it has not yet been shown whether that
energy release can be efficiently converted into kinetic energy of the envelope.

7.5 Eccentricity

In PDM, the initial eccentricity of the orbit is zero for most of their simula-
tion. By the end of the dynamical in-fall phase a small eccentricity is driven

4 For details of the how their sample of post-CE systems was selected see De Marco et al.
(2011).
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into the system (e ∼ 0.1). Their two simulations where the companion was
placed further out or had a larger-than-keplerian orbital velocity, resulting in
a mild initial eccentricity, finished with slightly larger eccentricities than the
simulations that were started in circular orbits. Eccentricity measurements on
real post-common-envelope systems have not yet reached the level of precision
to test this.

7.6 Entering self-regulation?

A vital question is whether the endpoints of the simulations in both RT and
PDM are simply the start of a longer, self-regulated phase. In the terminology
of §2 is this the end of phase II and the start of phase III? Alternatively,
has phase II ended with envelope ejection and no further spiral-in (or a rapid
merger)? It would be unrealistic for calculations like this to follow phase III.
Furthermore, since the in-spiral timescales involved become so long, it would
be natural for calculations like this to look like they are converging on a steady-
state in either case.

It might be that, if 25% of the envelope is ejected in this phase (as found by
RT), the rest is ejected in a separate later phase of the CE event, following a
period of self-regulated spiral-in. Asymptotically-slowing calculations are very
sensibly stopped so as not to waste computer time, but we encourage thought
as to how to distinguish whether such simulations are entering a phase of
self-regulation.

As the timescale of these simulations starts to approach the thermal timescale,
processes other than pure hydrodynamics begin to become important. This is
the regime in which 1D stellar-evolution type codes seem most useful, as they
can typically include more physics than is present in 3D hydro codes. How-
ever, we should still be careful to check that assumed symmetries are not too
problematic.

8 Numerical Methods

At present it is not possible to treat the whole common-envelope problem with
only a single code and a realistic amount of computer time. The dynamical
plunge-in phase could be treated with some hydrodynamic codes. The pre-
and post-plunge-in stages (the onset of mass transfer and the slow spiral-in)
are each likely to occur on a thermal timescale or longer, and could only be
treated with a code that includes a full equation of state, and both radiative
and convective energy transfer. An appropriate code for these longer phases
would be a stellar-evolution code that is adapted to treat at least some spe-
cific features of the common envelope evolution, although such codes would
currently only treat the problem in 1D and so could miss other key aspects of
the situation.
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8.1 Existing 3D hydrodynamic methods and their limits

A wide variety of numerical tools are available to model the stages of com-
mon envelope evolution which are dominated by hydrodynamics. In principle,
Lagrangian codes are the most straightforward and accurate: comparing pres-
sures at the centres of adjacent zones gives the acceleration on each zone edge.
However, Lagrangian grids suffer in multi-dimensional problems, as the zone
edges can become tangled. Eulerian codes avoid mesh tangling, but the rel-
ative motion between the matter and mesh leads to numerical advection. A
number of advances to the Eulerian grid-based technique have increased the
power of Eulerian techniques in modeling common envelope: nested grids, ro-
tating grids, adaptive mesh refinement (AMR). Modern computers also allow
sufficiently high resolution smooth particle hydrodynamics (SPH) calculations
to study CEE. In addition, adaptive Lagrangian-Eulerian (ALE), particle-in-
cell and spectral methods are becoming more common in astrophysics. All of
these computational methods provide a wide range of choices for modelers
of common envelope evolution. Here we discuss these techniques, focusing on
their application to common envelope model simulations.

An important aspect of numerical modeling is understanding the strengths
and weaknesses of a given technique and how these strengths and weaknesses
will affect the results in a given application. We present an introductory sum-
mary of these below.

ALE, as the name implies, tries provide the best features of both La-
grangian and Eulerian codes. Usually they behave like Lagrangian code, with
Eulerian-like re-zoning available to avoid mesh tangling. Unfortunately the
increased complexity can produce new difficulties. ALE codes are strong in
problems such as core-collapse where the stellar core collapses, nearly spher-
ically, several orders of magnitude in space before turbulence sets in. In such
problems, a strict Lagrangian code, followed by an Eulerian turbulence calcu-
lation takes advantage of the strengths of the adaptive Lagrangian-Eulerian
technique. It is not clear that the common-envelope problem has features where
a pure Lagrangian capability will be important and ALE’s strengths may not
be well-suited for the common envelope problem.

Particle-in-cell codes are generally adopted where detailed microphysics
must be modeled, and we are not at this stage for common envelope calcula-
tions. Finally, the sensitivity of spectral methods to boundary conditions make
complex problems such as modeling the common envelope process daunting.
At this point, it is not clear that these 3 “new” techniques are ideally suited for
the problems associated with CEE. Instead, we will focus on basic grid-based
and SPH techniques.

Strengths of Eulerian, Grid-Based Codes

– History and Code Base: The long history of grid-based schemes in compu-
tational physics has led to a number of schemes developed to better model
shocks and include additional physics such as radiation transport.
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– Tracing space, not mass: Grid-based codes are ideal for low-mass flows:
e.g. winds, mass streams in accreting binaries, and the low-density cavities
that might be formed during CEE.

Weaknesses of Eulerian, Grid-Based Codes

– Advection term: The advection term in the hydrodynamic equations of
a grid-based code generally does not allow strict momentum or angular
momentum conservation and it leads to numerical diffusion of heat and
materials. Local non-conservation leads to global non-conservation. For cal-
culations of the common-envelope problem, the lack of angular momentum
conservation can alter the final result.

– Tracing mass: Grid-based codes are not ideal for tracing mass, and that
makes following the ejecta in a common envelope calculation difficult.

– Shock modeling schemes: Although the shock modeling schemes used in
grid-based codes are ideal for shocks along the grid, they are not so accurate
off-axis and conserve total energy often at the expense of getting erroneous
internal energy estimates.

– The re-zoning in AMR cannot simultaneously conserve energy, density and
pressure gradients and some care must be given to re-zoning algorithms.

Strengths of Smooth Particle Hydrodynamics

– Linear and Angular momentum are conserved. However, strict conservation
is not maintained with gravity implementations.

– Ideally suited for problems tracing mass, e.g. the ejecta in a common en-
velope phase.

Weaknesses of Smooth Particle Hydrodynamics

– Low-mass streams are difficult to model. SPH is not an ideal tool to model
the initial onset of the common envelope phase (though see, e.g., Church
et al., 2009).

– Low-density bubbles or cavities formed inside the (departing) envelope
might also suffer from poor resolution.

– Most implementations use artificial viscosity to model shocks. This typi-
cally broadens the shock front, preventing crisp shock models. In addition,
the artificial viscosity may over-estimate the amount of friction in the flow.

– Setup is generally more difficult. For example, careful thought and wisdom
is needed to make the best choice of particle mass for a particular problem.

– Few off-the-shelf packages are available with which to include additional
physics.

For further discussion of the practical strengths and weaknesses of SPH
see, e.g., Price (2012); for more formal reviews see, e.g., Rosswog (2009) and
Springel (2010).

In any CE calculation adopting either grid- or particle-based schemes, we
must worry about how the scheme implements gravity. Typically, SPH schemes
use tree-based gravity schemes, as do many AMR codes (Barnes & Hut, 1986;
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Warren & Salmon, 1993, 1995). Multipole schemes are also prevalent in grid-
based codes. Each gravity routine carries with it numerical artifacts and these
must be understood. Tree-based schemes are accompanied by a multipole ac-
ceptibility criterion (MAC) and this can be easily tuned to determine the
errors in the gravity routine (Salmon & Warren, 1994).

Boundary conditions can also pose problems for both grid- and particle-
based schemes.

Code comparison can be an extremely powerful tool to distinguish between
the numerical artifacts of different schemes, as performed for CEE by Passy
et al. (2012a).

Finally, we stress that that any numerical scheme must be used with care.
Understanding the weaknesses of a technique is critical to interpreting the
results.

8.2 A novel generalisation of mesh-less methods

As with other approaches, new numerical methods can be developed. In the
Appendix we demonstrate this by showing that Lagrangian particle-based
methods are a subset of more general mesh-less finite-volume schemes. The
spatially-discrete equations have the same form and properties as the ones for
mesh-based finite volume numerical schemes, whilst the geometrical quantities
(corresponding to volumes and areas in mesh-based schemes) are expressed as
spatial integrals in mesh-less schemes. As a concrete example we also show
that several approximations are needed to obtain the SPH equations in closed
form suitable for numerical integration, and these approximations introduce
certain inaccuracies. The approximation can be improved with high-order nu-
merical quadratures, but the computational cost and complexity of these may
well be comparable to that of unstructured mesh construction in mesh-based
schemes. This mesh-less generalisation breaks down the artificial differences
between mesh- and particle-based methods, and hopefully opens the way for
codes which have the advantages of both types.

8.3 1D simulations: what can be learned?

Early attempts at simulating the CE phase in one dimension produced some
successes. The simulations of Meyer & Meyer-Hofmeister (1979) set the timescale
for CE evolution at around 1000 years. However these simulations were unable
to model higher-dimensional effects such as the preferential ejection of mate-
rial in the orbital plane (Bodenheimer & Taam, 1984) or the spiral shocks
and circulation currents generated by the infalling cores (Taam & Sandquist,
2000). If these effects are not included, simulations of CE evolution lead to
very different results and often suggest no mass ejection at all.

Clearly we would like to be able to run full three-dimensional high-resolution
hydrodynamic simulations of the CE phase for multiple systems, but unfor-
tunately the computing power required to do so on a reasonable timescale is
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still many years away. It would be extremely useful if we could use detailed
three-dimensional models to gain sufficient understanding of the non-spherical
processes so that we could derive a one-dimensional parameterization of the
missing effects. One-dimensional models have the strong advantage that they
can be run sufficiently quickly that the CE phase of a large number of systems
can be modelled at the expense of relatively little computing time. This would
allow us to come up with quantitative prediction for the outcome of a CE
phase for a wide range of systems.

The early one-dimensional simulations of Meyer & Meyer-Hofmeister (1979)
assumed that the angular momentum in the CE was deposited into the en-
velope by the spiraling cores and then redistributed diffusively by convection
leading to a steady state distribution satisfying

∂

∂r

(
µr4 ∂Ω

∂r

)
= 0 (14)

where µ is the convective diffusion coefficient which was taken to be uniform.
This is a very simple approximation which could easily be improved upon
given our current knowledge. In particular, we stress that it is essential to
restore the time-dependence of the angular momentum distribution because
the evolution of the envelope can occur on a dynamical timescale.

An example of a similar model including some of the missing physical
effects is:
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= J̇(r) (15)

where we have used a model similar to Meyer & Meyer-Hofmeister (1979) –
based on angular momentum conservation – but we have included a number
of important terms:

– U is a term for advection of angular momentum by circulation,similar to
the Eddington-Sweet circulation expected in rotating stars (Zahn, 1992).

– µ, the standard diffusion coefficient, has been retained, but we can now
reasonably model its spatial variation. It has been noted that some numer-
ical simulations predict a single convective cell in the CE (Taam & Ricker,
2010). This may require revising the diffusion coefficient from the one pre-
dicted by standard mixing-length theory. Note that this diffusion coefficient
assumes angular momentum is transported by shear-induced turbulence or
some similar process so that the system tends towards solid body rotation.

– ν is an additional diffusion coefficient. This represents the alternative pos-
sibility that fluid parcels are able to retain their angular momentum. In
this case the system tends towards a state of uniform specific angular mo-
mentum (e.g. Arnett & Meakin, 2010).
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– J̇ , the source term on the right-hand side, describes how angular momen-
tum is deposited in the envelope. In the standard approximation this is
a delta function. However, models show that spiral shocks produced by
the cores are responsible for depositing much of the angular momentum
(Taam & Sandquist, 2000) so it seems more sensible to choose a smoother
function.

The forms of U , µ, ν and J̇ are currently unknown. More work is needed to
derive reasonable prescriptions for them based on three-dimensional results.

We can also use three-dimensional results to refine our models for accretion
of material by the cores, the rate at which they deposit energy into the envelope
and the rate of mass loss from the system. With sensible treatments for these
effects, a one-dimensional approximation of CE evolution could be used to
predict how the ejection timescales and post-CE properties of binary systems
might vary for a wide variety of initial conditions.

9 Compact objects and hypercritical accretion

Stars spiralling into the envelope of their companion are usually expected to be
limited in the rate at which they can accrete to the rate at which the force of the
radiation released in the accretion is equal to the inward gravitational force in a
spherical model, i.e. the Eddington rate. For a neutron star accreting hydrogen-
rich matter, this limiting rate is ∼ 1.6× 10−8M� yr−1. Although a derivation
based on spherical accretion is not strictly valid when accreting material with
angular momentum, in most astrophysical phenomena, the maximum accretion
rate onto a neutron star lies within a factor of a few of this value.

But the accretion rates in common envelope evolution can be so high that
the emitted radiation is trapped within the flow. At these accretion rates, the
temperatures at the base of an accreting neutron star are sufficiently high
to drive neutrino emission. These neutrinos can remove the potential energy
released from accretion without generating any significant radiation force to
prevent further accretion. In such conditions, the neutron star could accrete
well above the Eddington rate, a process known as hypercritical accretion.

If hypercritical accretion happens, it might prevent the formation of some
neutron-star X-ray binaries and close double-neutron-star systems through
the canonical CE formation channel. This led to the proposal of double-core
CE evolution as an alternative mechanism for the formation of such systems
(Brown 1995, see also Dewi et al. 2006). Hypercritical accretion could also
prevent the formation of Thorne-Żytkow objects (Thorne & Zytkow, 1975,
1977).

For hypercritical accretion to occur, the photon radiation must be trapped
in the flow. One way to estimate this trapping is to compare the infall velocity
of the accreting material to the diffusion velocity of the radiation(Chevalier,
1993). The accretion velocity (vacc) is given by the accretion rate assuming a
spherical inflow:

vacc = Ṁacc/(4πr
2ρ) (16)
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where Ṁacc is the accretion rate onto the neutron star and ρ is the density at
radius r. The corresponding diffusion velocity (vdiff) is:

vdiff = r/tdiff = r
λmfpc

r2
= c/(ρκr) (17)

where tdiff = (r/λmfp)2λmfp/c is the diffusion time, λmfp = 1/(ρκ) is the mean
free path of the photon, κ is the photon opacity (for ionized hydrogen, this is
0.2 cm2 per g), and c is the speed of light. For the radiation to be trapped in
the flow, vdiff must be less than vacc. Solving for the accretion rate, we find:

Ṁacc > 4πcr/κ

> 0.003(r/1011 cm)(0.2 g−1 cm2/κ)M� y−1. (18)

If we assume Bondi-Hoyle accretion, the accretion rate exceeds this value for
many massive giants (Fryer et al., 1996). Actual accretion rates can be 1-
2 orders of magnitude less than the Bondi-Hoyle accretion rate because the
accretion radius (r) is smaller than the effective Bondi-Hoyle radius. Even so,
if the neutron star spirals deeply into the giant envelope, the photons will be
trapped, allowing the possibilty of hypercritical accretion, i.e. the Eddington
limit might be beaten.

For hypercritical accretion to work, neutrinos must effectively cool the ac-
creting material. We can use equilibrium atmospheres to calculate the neutrino
cooling timescale (Fryer et al., 1996). This calculation assumes that, as the
material piles onto the neutron star, it convects and forms a constant entropy
atmosphere on top of the neutron star. The neutrino cooling timescale must
be shorter than the photon diffusion timescale for it to dominate the cooling.
By comparing these timescales, Fryer et al. (1996) found that this criterion
corresponds to material entropies below 600 kB per nucleon. Typical stellar
material has entropy below 50 kB per nucleon, i.e. well below that threshold.
However, shock heating will raise the entropy (S) of the accretion flow above
values typical for stellar material (Fryer et al., 1996):

S = 374

(
MNS

1.4M�

)7/8
(

Ṁacc

10−4M�yr−1

)1/4 ( r

1010cm

)−3/8

(19)

where MNS is the mass of the neutron star. Nonetheless, this constraint is less
restrictive than equation 18 so we can assume that if the photons are trapped
in the flow neutrino cooling will allow hypercritical accretion.

However, we repeat that this derivation assumed that the unstable ac-
cretion atmosphere will efficiently convect such that the entropy remains in
instantaneous equilibrium throughout that atmosphere. In nature, this con-
vection is explosive and will likely drive outflows that can ultimately reduce
the rate of mass accretion. These uncertainties make it difficult to determine
the exact criterion for hypercritical accretion. To an order of magnitude, hy-
percritical accretion is likely to occur if the estimated Bondi-Hoyle accretion
rate is greater than 10−2M� yr−1. Below this value detailed calculations are



Common Envelope Evolution 53

required. However, the Bondi-Hoyle-Lyttleton prescription significantly over-
estimates the rate observed in simulations (see §3.3.5 and the detailed discus-
sion in Ivanova 2011); if current simulations are producing the correct answer
for the accretion rate then it is unlikely that hypercritical accretion will take
place during CEE (100 times less than estimated Bondi-Hoyle accretion rate,
or 10−3M� yr−1 Ricker & Taam, 2012).

10 Linking with observations

Since a CE event is short-lived, it might be argued that we are highly unlikely
to catch it while it occurs (although see §10.2), in which case we could only
observe the resulting post-CE systems (including post-CE nebulae). Our lack
of full-scale simulations of all the phases does not improve the situation, as we
have few definitive physical predictions to offer.

As explained in §8, 3D simulations currently only help with understand-
ing the appearance of dynamical-timescale events, i.e. very short-lived phases
which are unlikely to be observed. Even their predictions for post-CE appear-
ance are only directly applicable for CEE events which end after the dynamical
plunge-in phase. On the other hand, the appearance of a CE object during a
long-lasting self-regulating phase is currently provided only by 1D calculations
and, since it is certain that systems undergoing CEE (or merging) will not be
spherically-symmetric, we must be cautious about applying 1D calculations
when we do see systems undergoing CEE or during mergers. At least if a CE
ends in a merger, the evolution of this merger product can be understood by
means of a regular stellar code, once the structure of the merger product is
determined.

So far, the community has mostly only been able to link models to obser-
vations for populations of post-CE systems. Even in this case, we stress that
comparisons are usually performed within the framework of the α-formalism.
These studies principally aim to calibrate our existing parameterisation, fine-
tuning αCE-values using post-CE masses and periods (recent examples, Zoro-
tovic et al., 2010; Davis et al., 2010, 2011; De Marco et al., 2011). Other
parameters (e.g. αth) can be added, and the parameters can be allowed to
vary systematically between systems, but even this might well miss real phys-
ical complexity. As discussed in § 3, there is no reason why the effective value
of αCE cannot vary drastically even between systems with similar initial condi-
tions. Moreover, the calibration results produced by different groups sometimes
show opposite trends; see the discussions in § 6.2,§ 7. Here we will pay attention
to other characteristics of post-CE systems as possible keys to understanding
common-envelope evolution.

10.1 A priori expectations of appearance during CEE

Whilst the plunge-in is proceeding, the envelope of the primary star expands.
A giant donor rapidly evolves up its giant branch, though appearing colder
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than a regular giant of the same luminosity (Ivanova, 2002; Podsiadlowski &
Ivanova, 2003), being closer to Hayashi line. The degree of the expansion of the
bound envelope at the end of the plunge-in phases – and therefore also during
the self-regulating spiral-in – depends on the mass ratio, on the primary initial
mass and on its radius (or luminosity), although it is not currently possible to
specify the sensitivity with respect to these parameters.

As an example of the lack of our current understanding, we first describe
some results taken from 1D simulations (described in full detail in Ivanova
2002 and in parts in Han et al. 2002; Ivanova & Podsiadlowski 2002, 2003b).
A 1.6M� giant with a pre-spiral-in radius of about 140 R� was found to
expand 3-fold during a common envelope event with a 0.3M� companion, on
a time-scale of 20 years. During the plunge-in phase, a 20 M� giant with a pre-
CE radius of 1100R� expanded by a factor of about 2.5 over 100 years when
the companion had a mass of 5M�, but when the companion had a mass of
1M� then the expansion was greater (a factor of 4) and the plunge-in is more
rapid (taking place in only ∼ 50 years). In that second case, the spiral-in of the
1M� companion never changes to become self-regulating. The more aggressive
spiral-in might partly explain why the lower-mass secondary produced greater
envelope expansion, though the difference in spiral-in duration is less than a
factor of two.

Using a giant of 0.9 M� (with a radius an order of magnitude different to
the 20 M� star in the previous example), the 3D simulations of Passy et al.
(2012a) found that the orbital decay of less massive companions takes slightly
longer than for more massive compations. It is perhaps not surprising that a
very different situation, modelled using very different methods, results in the
opposite trend. But our lack of understanding of that difference is significant.
We note that the degree of expansion of the bound envelope in the two cases
is similar (a factor of several).

It might be that this particular timescale comparison between codes is in-
valid, i.e. that we are not comparing physically quatities with similar meaning.
We define the ‘fast plunge-in’ to start when the envelope begins to expand. In
1D, this fast plunge-in starts gradually, whilst in 3D it is forced to coincide
with the start of the simulations due to the choice of initial conditions. Also
the 3D results do not provide a single value for the radius of the envelope, so
it is not clear when exactly fast envelope expansion started.

The stellar expansion is directly related to the increase in luminosity, by
4-16 times (by up to 3 magnitudes) for the cases described above. At the very
end of the self-regulating spiral-in phase, if the binary is not fated to merge,
the envelope experiences another fast expansion.

Before the envelope is ejected, 1D simulations find that this CE may also ex-
perience pulsations of increasing strength (see, e.g., the case with 1.6 + 0.3M�
from Ivanova 2002), before becoming unbound. The period of pulsations is
about several years; at least an order of magnitude longer than star’s dynam-
ical timescale. There are no 3D simulations for this stage. Furthermore, the
important timescale to develop these pulsations is significantly longer than the
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dynamical one, and existing 3D hydrodynamical codes do not contain all the
physics necessary to reproduce them.

Likewise, none of the numerical methods (1D or 3D) used thus far is capable
of obtaining the beginning of envelope ejection via outflows as discussed in
Ivanova & Chaichenets (2011).

10.2 Observed transients as potential CE events or stellar mergers

Despite being a relatively short-lived event, CEE is expected to be accompa-
nied by a rise in luminosity which could be detected as a transient event. V838
Mon-type eruptions and the great eruption of η Car have both been argued
to be potentially caused by violent binary interactions.5 In particular, V1309
Sco (a V838 Mon-class event) seems to be the most promising case so far for
an active CE event (or merger) being caught in action.

The discovery of V1309 Sco was reported by Nakano et al. (2008) and it
was identified as a “red nova” or “V838 Mon-type eruption” using VLT/UVES
followup observations by Mason et al. (2010). The eruption was detected early
in September 2008 and took place in the field of view monitored by the OGLE
project (Udalski, 2003). Tylenda et al. (2011) reported the detection of the
progenitor up to six years prior to the outburst. The pre-outburst primary
was classified photometrically as an F-type giant (Rudy et al., 2008).

Prior to the outburst the object was an eclipsing contact binary with an
orbital period of ∼ 1.4 days, however the orbital period was not constant
and decreased by 1.2% between 2002 and the outburst in 2008. This orbital
period is arguably too long to classify the progenitor as a W UMa-type binary,
which would be expected to merge as the primary leaves the main sequence
(Webbink, 1976; Rasio, 1995). However the orbital period is also too short
to say that the binary contained a very evolved giant. For such a primary,
especially considering the apparently comparatively low mass of its companion,
the theoretical prediction would be that a common envelope event would be
likely to result in a merger rather than in envelope ejection.

Between 2002-2006 the light curve showed two maxima and two minima
during each orbital period, but transitioned to a single maximum and mini-
mum in 2007. During the same time, the brightness of the progenitor increased
to I ' 15.5 in April 2007 and then decreased by ∼ 1 magnitude until March
2008, when the brightness began to rise exponentially. At its peak in Septem-
ber 2008, the object was ∼ 6 magnitudes brighter than before the outburst
(Tylenda et al., 2011).

5 We clarify here that we do not mean that either of V838 Mon or η Car were definitely
CEE. There are several alternative, non-CE, scenarios which try to explain V838 Mon. Nor
is the Great Eruption of η Car known to be a CE event; it could perhaps have been another
kind of rapid binary interaction, e.g., a mass transfer event (Kashi et al., 2010). The fact
that η Car is currently a binary system has been used to argue against any stellar merger
models, but it is not possible to completely rule out a CE event as it could previously have
been a triple system.
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During the first five months of the rise, the characteristic timescale for the
increase in luminosity was 27 days. During the outburst and the subsequent
decline the spectral type changed from F9 in September 2008 to M7 in April
2009 and M3 in October 2010 (Tylenda et al., 2011). This is similar to the
observed evolution of V838 Mon itself (see, e.g. Tylenda, 2005).

It is tempting to interpret these results as a binary that evolved from a
contact system (before the second peak in the light curve disappears) to a
stable common-envelope systems (after the second peak has disappeared but
before the outburst) followed by a merger (when the exponential increase
in the luminosity begins); see also Stȩpień (2011). It is noticable that the
behavior is qualitatively as predicted by simulations. Quantitative comparisons
are less helpful, since no simulations for such a system have been published.
Nonetheless the increases in luminosity and radius are much larger, and the
post-outburst decline in luminosity also more rapid, than might have been
expected based on the published simulations involving larger, more evolved
giants (as described in §10.1).

So V1309 Sco seems like an excellent candidate for an individual system
which has been observed during the CEE phase. The fact that we have evidence
for a pre-outburst binary nature is especially compelling in that case. The
resemblance to V838 Mon is strong enough for us to consider a link to CEE
very likely in that case too. Indeed, stellar merger models were proposed as
potential explanations very soon after the discovery of the V838 Mon outburst
(see, e.g., Bond et al., 2003; Soker & Tylenda, 2003; Retter & Marom, 2003;
Tylenda, 2005; Tylenda et al., 2005).

A wider class of transients with similarities to V838 Mon also invite a possi-
ble CEE explanation: “red novae”. Those objects are not novae by their phys-
ical nature, despite their observational similarities; for that reason alternative
names for this class have been suggested, including “intermediate-luminosity
red transients” and “intermediate luminosity optical transients”. These events
have luminosities between novae and supernovae, with peak absolute visual
magnitudes of −13MV to −15MV . During the outburst the source is cold –
hence red – unlike a normal classical nova. The energy involved in producing
these events is order-of-magnitude comparable to the likely orbital energy re-
lease from CEE or the binding energy of the envelope (about 1047 erg, Bond
et al. 2009; Kulkarni et al. 2007). Specific examples of this class include M85
OT 2006-1 (Kulkarni et al., 2007; Ofek et al., 2008), NGC300 OT 2008 (Bond
et al. 2009; though see Kashi et al. 2010 for an alternative scenario which in-
volves rapid mass transfer from an extreme AGB star on its MS companion),
PTF 10fqs (Kasliwal et al., 2011) and M31 RV (Bond, 2011, and references
within). The rate of similar events has been estimated to be as much as 20%
of the core collapse SN rate (Thompson et al., 2009). The observed ejecta
velocities also broadly match what might be expected from CEE (or a stellar
merger). Kasliwal et al. (2011) detected expansion velocities in PTF 10fqs of
∼ 1000km s−1. For NGC300 OT 2008 a wide range of velocities have been pub-
lished, from ∼ 75km s−1 (Bond et al., 2009), to ∼ 1000km s−1 (Berger et al.,
2009). The low-velocity end of that range is easily compatible with CEE, or a
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stellar merger model involving a large giant star. Velocities of ∼ 1000km s−1

suggest that the primary star would have had to be less extended, but this
still could be compatible with an early giant, as was observed in the example
of V1309 Sco.

10.3 Post-CE appearance

If the CE event results in a merger, then the initial post-event reaction of the
star is the rapid evolution of a star out of its thermal equilibrium. In this case
the star is overluminous, and contracts towards equilibrium as it radiates away
excess energy. This contracting sequence, just like during the plunge-in phase,
goes along the giant branch, though now towards smaller luminosities – during
a spiral-in and subsequent merger, the primary star performs a loop on the
HR diagram around the giant branch. After this fast contraction had finished,
its further evolution depends on the details of mixing of the inner layers, and
may be similar to a normal giant evolution (although perhaps with abnormal
surface composition). Abnormal chemical compositions may include enhanced
abundance of He (up to 0.4, Podsiadlowski & Ivanova, 2003) or s-elements
(Ivanova & Podsiadlowski, 2003b), as well as unusual CNO ratios (Ivanova
& Podsiadlowski, 2003a). B[e] supergiants might well be post-merger systems
(Podsiadlowski et al., 2006).

In some cases then post-merger massive stars are able to reach core-collapse
as a blue supergiant. This explanation for the progenitor of SN 1987 A is
now well-established, largely as a result of the distinctive triple-ring nebula
which was formed following the merger (Podsiadlowski, 1991; Podsiadlowski
et al., 1991; Podsiadlowski, 1992; Morris & Podsiadlowski, 2006, 2007). Other
information about the violent past of merger products could be provided by
the shape of the nebula around it (e.g., Morris & Podsiadlowski, 2009).

Post-merger giant stars could well be rapidly rotating, and giants with
unusually high surface velocities have been identified (Garcia, 2011). Stars
where only the surface layers are rapidly rotating could be especially notable:
potentially a low-mass companion is still orbiting in the outer, low-density,
layers of the giant.

Let us now consider in more detail cases when CE leads to survival of the
binary.

10.3.1 Post-CE eccentricities as a constraint on time of the ejecta

One potential constraint on CEE that has received little previous attention is
the post-CE orbital eccentricity. If we detected post-CE eccentricity then it
would be a useful indication in trying to understand the end of the preceeding
CE phase. However, eccentricity is fragile. For fixed angular momentum, circu-
lar orbits have the lowest energy, so energy dissipation can act to circularise or-
bits following the CE phase. So the effects of tidal circularisation (Zahn, 1977)
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largely rule out many binaries from giving us useful information on eccentric-
ities (e.g. the large class of main-sequence + white dwarf binaries). However,
binaries in the nuclei of planetary nebulae should still be helpful, since in their
case there has been insufficient time since the ejection of the envelope for tides
to have had a significant circularising effect. Another promising exception is a
single long-period main-sequence + white dwarf system we mention below.

Potentially useful classes of systems are white dwarf-white dwarf and white
dwarf-neutron star binaries, along with systems containing an sdB star and a
compact remnant. In these binaries post-CE circularisation is expected to be
ineffective. SdB stars are radiative, and relatively short-lived; tidal circulari-
sation is believed to be much less effective in radiative stars than ones with
convective envelopes (Zahn, 1977).

What might we learn? We expect that the two stars entering a CE to be
in a near-circular orbit due to pre-CE tidal interactions. However, 3D sim-
ulations show that the eccentricity grows rapidly during the early spiral-in
phase. Ejection immediately following the dynamical plunge might therefore
leave residual eccentricity, which could potentially be used as a diagnostic of
this phase. Current 3D hydrodynamic simulations produce small eccentricities
at the end of this phase . 0.1. However, if the system continues into a slower
self-regulated spiral-in, the eccentricity built up during the previous plunge is
likely to be damped away. Observed eccentricities (or lack of) may then largely
tell us how effective and long-lasting this self-regulated phase is.

Another possibility is that the post-CE eccentricity could be increased by
the presence of a dynamically significant, close circumbinary disk – if one
exists. Tidal interactions with such a disk should be strongest at apastron,
which tends to amplify any existing eccentricity (Artymowicz et al., 1991).
Any observed eccentricities may indicate that such disks are present.

For the most part observed post-CE systems do not have significant ec-
centricities. Limits are typically of the order ε < 0.05 from radial velocity
work, although with more work upper limits on any eccentricity present of
around 0.01 should not be hard to achieve (generally the determination of pe-
riods rather than eccentricities has been the target of radial velocity work). In
eclipsing cases, one can reduce the errors by a further factor of 10 or so, and in
pulsar binaries, one can reach uncertainties in eccentricity of order ε ∼ 10−6.
However, apparent eccentricity detections should be treated with caution as
the measurement of eccentricity is always biased to be positive by whatever
errors are present (since the probability distribution is necessarily one-sided).
Applying a strict > 5σ criterion, there are two cases of significant eccentric-
ity amongst the sdB binaries which are PG1232-136 (ε = 0.060 ± 0.005) and
[CW83] 1419-09 (ε = 0.039± 0.005) (Edelmann et al., 2005). One other inter-
esting case is G 203-47, an M3.5V star in a 15-day orbit with a white dwarf and
having an eccentricity of ε = 0.068 ± 0.004 (Delfosse et al., 1999). With only
a few examples, against many non-detections, one should be wary of Kozai-
cycle driven eccentricity (Kozai, 1962), yet perhaps there is some potential for
learning about the CE phase from eccentricities.
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10.3.2 Planetary nebulae as a constraint on ejecta velocities and timescales

Approximately one in five planetary nebulae (PNe) are ejected common en-
velopes (Han et al., 1995; Bond, 2000; Miszalski et al., 2009b). The potential
role of CE ejection in shaping PNe morphology was considered very soon after
CEE was proposed (Webbink, 1979). Hence studying the diverse shapes and
velocity distributions of nebulae like these should give us insights into the CE
ejection mechanism. One may expect these PNe to all have the same shape
in virtue of the common phenomenon that generated them. In particular one
may expect a traditional bipolar shape, promoted by the loss of the AGB en-
velope in the equatorial plane (Sandquist et al., 1998; De Marco et al., 2003),
followed by a spherical fast wind from the hot primary, which swept past the
ejected common envelope. While this picture is expected, its realization can
take various shapes – see Fig.6 and Figs. 4 to 6 in De Marco (2009).

Initially, shapes around the few known post-CE PNe appeared not to be
systematically bipolar (Bond & Livio, 1990; Zijlstra, 2007). It was noted, how-
ever, that post-CE PNe lack the multiple structures that may form over several
phases of varying mass-loss, in line with their AGB evolution having been in-
terrupted. Morris (1981) and Soker (1997) suggested that bipolarity in PNe is
promoted by those binary interactions that avoid a common envelope phase.
However, later studies based on a larger number of post-CE PNe, showed
that there is at least a tendency for post-CE PNe to have bipolar shapes (De
Marco, 2009; Miszalski et al., 2009a), or a shape that results from a faded
bipolar structure. In addition, common-envelope PNe also seem to share a
propensity to exhibit low ionisation features, knots and filaments embedded
in larger, toroidal structures (Miszalski et al., 2009a).

A detailed kinematic analysis of post-CE PNe should be able to give sig-
nificant insight on the common envelope ejection phases and timescales. As
an example, Mitchell et al. (2007) carried out a detailed kinematical analysis
of the eclipsing post-common envelope binary central star of PN Abell 63.
In this edge-on object, a tube-like disk is expanding at 17 ± 1 km s−1 along
the orbital plane and two tenuous, collimated lobes with bright caps are ex-
panding perpendicularly to the plane of the disk and the plane of the orbit at
126± 23 km s−1. The lobes appear to have preceded the disk formation by a
few thousands years. Very similar kinematics are seen in other post-common
envelope PNe, such as ETHOS 1 (Miszalski et al., 2011, bottom left image
on Fig.6) and the “Necklace” (Corradi et al., 2011, top left image on Fig.6).
One interpretation of these objects is that a collimated outflow (perhaps even
a jet) was active during or shortly before the envelope was ejected. On the
other hand the kinematic analysis of NGC6778 shows that the two jet pairs
are kinematically younger than the main nebula. These two jet pairs also have
different velocities and seem to be curved (Guerrero & Miranda, 2012). Fur-
ther detailed studies of PN around post-CE central stars should provide us
with a great deal of insight onto the CE phase.
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Fig. 6 Post-CE planetary nebulae with known compact binaries as central objects.
Top left – Necklace Nebula (image credit: NASA, ESA, and the Hubble Heritage Team
(STScI/AURA), for details see Corradi et al. (2011)); top right – NGC 6337 (credit to
Corradi, for more details see Corradi et al. (2000)); bottom left – ETHOS 1 (credit to B.
Miszalski, for more details see Miszalski et al. (2011); Boffin & Miszalski (2011)); bottom
right – NGC 6778 (credit: Guerrero & Miranda (2012))

10.4 Double-core common-envelope evolution

In standard CEE, it is typically assumed that only one of the pre-CE stars has a
well-developed core and extended envelope, whilst the in-spiralling companion
star is assumed to be relatively dense. The special case where both stars have
expanded to giant-type structures by the onset of CEE is referred to as double-
core CEE.6 Successful envelope ejection from double-core CEE would expose
both cores, i.e. it would result in a binary composed of the cores of both the pre-

6 To help those who may be looking through early literature on CEE, we note that this
terminology has the potential to be confusing, as standard CEE was itself sometimes referred
to as “double-core evolution”.
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CEE stars. This possibility was briefly mentioned earlier in the context of the
onset of CEE, since double-core CEE does not normally begin following tidal
instability or dynamically unstable mass transfer (see §6.5). So, if double-core
CEE ever occurs, this fact would at least increase our understanding of which
systems undergoing mass transfer are unstable to entering CEE. Observational
confirmation that double-core CEE occurs – or does not occur – is not yet
available, but it seems worth continuing to investigate known systems to try
to constrain the incidence of this process. For example, the existence of double
He-rich hot subdwarf binaries might provide evidence that double-core CEE
does happen in some cases (Justham et al., 2011). The formation of double
neutron-star binaries was the original motivation for suggesting double-core
CEE, and some of them may indeed be produced through this channel (Brown,
1995; Dewi et al., 2006). However, the different spins of the observed double
neutron star systems suggest that these known systems did not evolve through
double-core CE. It also seems plausible that the apparent mild recycling of the
older neutron stars in the observed systems is due to mass transferred during
the thermal core readjustment following a normal, single, envelope ejection
(Ivanova, 2011).

11 Conclusions and Directions for future work

We have attempted to reassess everything that we know to-date from the
theoretical point of view about the physics of CEE and related events. This
has included comparing and trying to understand the main features of the most
recent hydrodynamic simulations of CEE, along with the relevant numerical
methods. We have also briefly discussed some of the more direct – and hence
hopefully less misinterpretable – observational constraints.

Most importantly, we have tried to understand CEE from a physical point
of view with the eventual aim of replacing the existing top-down parametriza-
tions (such as the energy formalism) with a bottom-up description. However,
it is clear that this problem is exceptionally complex. Any individual CEE
event consists of several sub-phases occuring on a wide range of timescales
and under the influence of diverse physical mechanisms. No existing numerical
method is capable of grasping it all. Moreover, pen-and-paper arguments still
do not agree on which are the dominant physical processes, and which physics
(if any) can be neglected.

In order to make progress, therefore, we need to determine how to study
the phases within CEE in a self-consistent way, whereby the outcome of one
phase becomes a realistic initial condition for the next phase. In addition to
dividing CEE into separate phases in time, each phase can be attacked from
different directions: we can try to define useful self-contained problems which
are both manageable and interesting.

It should be clear from this work that there are still many points of dis-
agreement within the community. For example, a strong constituency believes
that CEE is an intrinsically 3D problem: if that is correct, then great care
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would have to be taken over which 1D simultations, if any, would be worth-
while to perform. Nonetheless, there are some theoretical and modelling goals
which we think are both useful and realistically tractable. These include:

1 Understanding pre-CE evolution would help to better initialise
CE simulations. We should aim to constrain:

– the conditions needed to start a CE phase. Even the range of systems un-
dergoing RLOF which lead to CEE via dynamically-unstable mass transfer
is not yet fully known.

– the angular momentum distribution of the matter at the start of hydrody-
namical simulations.

– the pre-dynamically-unstable phase. This includes the time between the
start of RLOF and CEE as well as, e.g., enhanced winds before RLOF
properly begins.

2 During CEE, we should concentrate on a better physical under-
standing of:

– how one phase transforms into another phase, e.g. when a dynamical
plunge-in becomes a self-regulated spiral-in, or when a self-regulated phase
ends.

– whether and how recombination works in order to provide the envelope
with momentum. At the very least we need to equip hydro codes such that
ionization is included in their equations of state.

– to what extent the energy from the binary orbit is transferred to the enve-
lope through viscosity and local frictional heating, or through large-scale
gravitational interactions (i.e. spiral waves).

– how fine-tuned envelope ejection is, i.e. how close is the ejection velocity
of each element to the local escape velocity.

– the location of the bifurcation point that separates the ejected envelope
from the bound remnant.

– how outflowing envelopes are shaped, partly in order to allow comparison
with the morphologies of PNe.

3 Developing and understanding codes and methods for CEE, by:
– comparing existing 3D hydrodynamic codes and results. This includes un-

derstanding the influence of the initial conditions as chosen by different
groups, whether using the same or different types of code.

– attempting to treat the problem using coupled 1D and 3D codes, to try to
take advantage of their differing strengths. For example, 3D hydro could
be used to produce energy input source terms for a 1D code. Even graft-
ing model atmospheres onto 3D simulations could help us understand the
observational signatures of systems entering CEE.

– thoughtfully dividing the set of possible simulations into those which can
be treated with 1D codes, and which need 3D.

Whilst it is too early to speak about a detailed comparison with obser-
vations, more observational constraints from post common-envelope binaries,
and especially from observations of planetary nebulae, should be very helpful
in further understanding (as well as for code verification). Specifically, ob-
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servations on nebulae shapes and velocities may help to understand how the
ejection proceeded.

The eccentricity, if any, of post-CE binaries may also help to identify and
understand any CE events which resulted in envelope ejection immediately
following the dynamical plunge-in. It is expected that eccentricity would be
lost during the slow spiral-in, and might even be damped away during the
process of envelope ejection. The presence of eccentricity might therefore be a
clue that the envelope was ejected immediately after the the fast spiral-in stage,
not following a self-regulated spiral-in phase. Note, however, that observational
biases tend to produce spurious apparent eccentricities, so it is easier to give
upper limits on eccentricity than to be confident about detections.

One potential observation would give definitive information with the de-
tection of a single object. If we find a single Thorne-Żytkow Object, we would
have strong constraints on hypercritical accretion.

We note that the clarity and certainty of our understanding of CE physics
is certainly not yet good enough to predict formation rates of many classes of
system. For some post-CE systems the formation rate inferred from observa-
tions can not currently be explained within the mainstream energy formalism
when using physically realistic parameters (e.g., short-period black hole X-ray
binaries). This definitely strongly reduces the reliability of predictions for for-
mation rates, e.g. for systems with black holes, including close black hole-black
hole binaries which are of interest for gravitational-wave astronomy.

Those who study the formation rates of binary systems by means of popu-
lation synthesis must anticipate and acknowledge that current uncertainties in
theoretically predicted rates could be about two orders of magnitude arising
from uncertain CE energetics for systems where CEE is involved. (In addition
to this, formation channels involving CEE also introduce other uncertainties,
e.g. from qcrit.) In some binary systems the major uncertainty comes from our
poor understanding of the energetics involved (and it is hence related to αCE),
whilst in others it is due to an arbitrary choice of the remaining core’s mass
(hence it is related to λ). This review discusses several ways in which these
uncertainties might be reduced by more careful consideration of the physics
involved. Attempts to observationally calibrate these parameters are only ad-
visible if performed for well-defined classes of post-CE binaries, since there is
very strong reason to expect they should not be global parameters. We stress
that trying to determine the single effective value of αCE is very misguided:
there will be different values in different cases, as the time-scales and energy
sources and sinks should vary from one CE event to another.

We are convinced that much work remains to be done, however we feel
optimistic that the solution of the problem could be achieved within the next
decade.
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A On a spatially-discrete formalism for mesh-less finite-volume
methods

Numerical finite-volume methods are usually divided into Eulerian and Lagrangian schemes.
In the former one, the discretization points are fixed in space, whereas in the latter the geom-
etry they are moving with the fluid velocity, in which case it is convenient to think of them as
physically associated with a fluid element. Usually, Eulerian scheme use a geometrical mesh,
either structured (e.g. Cartesian) or unstructured, whereas Lagrangian methods are mostly
considered to be related to particle methods. These two seemingly different approaches actu-
ally have a lot in common. It has recently been demonstrated that fully Lagrangian methods
can be implemented on unstructured Voronoi meshes (Trease, 1988; Heß & Springel, 2010),
while Eulerian scheme can be successfully formulated in entirely mesh-less form (Vila, 1999;
Hietel et al., 2000; Junk, 2002; Lanson & Vila, 2008; Gaburov & Nitadori, 2011).
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Here we present a generic formalism that leads to spatially discrete mesh-less finite-
volume equations. The form of the these equations is the same as in the case of spatial
discretization on a mesh. The geometrical quantities that are obtained from the mesh, such
as volumes or areas, are translated into spatial integrals in the mesh-less schemes. Finally,
we show that this generic formalism leads, via a few approximations, to standard SPH
equations of motions. This explains why SPH, among other Lagrangian particle methods
(Dilts, 1999, 2000; Abel, 2011), remains the most robust particle method in astrophysical
computational fluid dynamics.

A.1 Spatially discretized finite-volume equations

A.1.1 Mesh-based discretized equations

The conservative formulation of Euler equation of ideal hydrodynamics can be compactly
written in the following integral form

d

dt

∫
T
q dV +

∮
∂T

F · dΣ =

∫
T
S dV, (20)

where T is volume of a fluid element, ∂T is its boundary with outward pointing normal, and
q and F are defined as follows

q =

 ρ
ρv
etot

 F =

 ρ(v −w)

ρv ⊗ (v −w) + P Î
etot(v −w) + Pv

 . (21)

Here, w is the mesh velocity, ⊗ is a tensor product, Î is a unit tensor, and the rest of the
symbols carry their usual meaning. The source term S is identically zero for an isolated
system with no external forces, i.e.:

Sisolated =

 0
0
0

 . (22)

In the presence of a gravitational potential φ then S would take the following form:

Sφ =

 0
−∇φ
−v∇̇φ

 . (23)

For a Eulerian scheme, the location of the mesh is time independent, thus w = 0. In
Lagrangian schemes the mesh moves with fluid velocity w = v, and so that volume integral
of density over the fluid element, namely its mass, is exactly constant with time. The physical
meaning of these equations is rather simple: the equations state that the volume integrated
amount of a quantity q inside a given volume element is equal to the net negative flux of
this quantity outside this volume.

The Euler equation (Eq. 20) has a simple formal spatial discretization on an arbitrary
mesh

d

dt
(q̄iVi) +

∑
j∈∂T i

(F ·A)ij = S̄iVi. (24)

Here, q̄i and S̄i are the mean values of q and S inside a mesh cell Ti which has volume Vi.
The sum is carried out over each of the cell boundaries, and here we introduce a compact
notation for the surface integral of a single face between mesh points i and j:

(F ·A)ij =

∫
∂Ti,j

F · dΣ. (25)



Common Envelope Evolution 73

To achieve a second order approximation of this surface integral (Eq. 25) using the one-
point quadrature rule, the flux of q between two particles, Fij is evaluated at the face
centroid. This equation states that for numerical purposes only a projection of the flux to
the surface normal is required, which we write as FnijAij = Fij ·Aij . It is simple to check

that Fnij = −Fnji. Finally, the geometrical quantities (e.g. cell volumes and the areas of and

normals to cell boundaries) can be directly computed from the mesh.
This discretized form can be straightforwardly applied to an equidistant three-dimensional

Eulerian Cartesian grid. In this case, we have Vi = V = l3, Aij = A = l2, where l is spac-
ing between grid points along the coordinate axes. We note that in the case of a Eulerian
scheme, dq/dt = ∂q/∂t becase w = 0, thus we have:

V
∂q̄i,j,k

∂t
+A(Fx

i+ 1
2
,j,k
−Fx

i− 1
2
,j,k

)−A(F y
i,j+ 1

2
,k
−F y

i,j− 1
2
,k

)+A(F z
i,j,k+ 1

2

−F z
i,j,k− 1

2

) = S̄i,j,kV,

(26)
where q̄i,j,k is average value of q in a cell (i, j, k) and Fx

i+ 1
2
,j,k

, F y
i,j+ 1

2
,k

, and F z
i,j,k+ 1

2

are

projections of fluxes of q between neighbouring cell onto x−, y− and z−direction respec-
tively. Now dividing both sides of this equation by V , we obtain a conventional form of
second-order spatial discretization that is used on most Eulerian schemes on equidistant
Cartesian grid

∂q̄i,j,k

∂t
+

Fx
i+ 1

2
,j,k
− Fx

i− 1
2
,j,k

l
+

F y
i,j+ 1

2
,k
− F y

i,j− 1
2
,k

l
+

F z
i,j,k+ 1

2

− F z
i,j,k− 1

2

l
= S̄i,j,k (27)

A.1.2 Mesh-less discretized equations

Any straightforward application of Eq. 24 to mesh-less scheme runs into a wall: a set of par-
ticles without underlying mesh lack a well defined definition of volume and areas. Therefore,
the simple approach that works with mesh-based scheme fails in mesh-less case. Here, we seek
a discrete formulation of mesh-less equations by starting from a weak form of conservation
equations (e.g. Vila 1999) ∫

(ϕ̇q +∇ϕ · F + ϕS) dV dt = 0, (28)

where the volume integral is taken over all the space-time domain, ϕ is a differentiable
function, and ϕ̇ = ∂ϕ/∂t+ w · ∇ϕ is an advective derivative in the particle velocity field w.
As with the mesh-based scheme, when w = 0 and w = v the final equations will describe
Eulerian and Lagrangian scheme respectively. One of the reasons to use this integral form
of conservative equations instead of Eq. 20 is lack of explicit references to surface integrals,
which proves to be important in the subsequent derivation.

In order to spatially discretize Eq. 28, we introduce a partition of unity ψi(x), which is
a function defined such that

∑
i ψ(x) = 1. Here, index “i” refers to the i-th particle, and

the sum is carried out over all particles. If data is defined on a set of interpolation points,
qi, the interpolated value at an arbitrary location x is q(x) =

∑
i qiψi(x), and its gradient

is ∇q(x) =
∑
i qi∇ψi(x). Using these definitions we obtain

V f̄ =

∫
f(x) dV =

∫ ∑
i

fiψi(x) dV =
∑
i

fi

∫
ψi(x) dV =

∑
i

fiVi, (29)

where the integral is taken over all the computational volume. A corollary to this is the
definition of the volume. Substituting f(x) = 1 into above integral we find

V =
∑
i

Vi, where Vi =

∫
ψi(x) dV, (30)

where Vi is the effective volume of particle i. By construction, the total volume of particles
is conserved in a closed system.
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In the next step, we apply similar procedure to the second term of the integral in
Eq. 28. Leaving the time integral temporarily out of the derivation and focusing on spatial
discretization, we write∫
∇ϕ·F(x) dV =

∫ ∑
i,j

ψi(x)ϕj∇ψj(x)·F(x) dV =

∫ ∑
i,j

ψi(x)(ϕj−ϕi)∇ψj(x)·F(x) dV,

(31)
here, we insert 1 =

∑
i ψi(x) into the integrand and the definition of a gradient inside the

integrand. In the last term we also made use of the following:∑
i,j

ψi(x)(−ϕi)∇ψj(x) · F(x) (32)

=
∑
i

ψi(x)(−ϕi)F(x) · ∇
∑
j

ψj(x)

=
∑
i

ψi(x)(−ϕi)F(x) · ∇1

≡ 0

in order to add
∑
i,j ψi(x)(−ϕi)∇ψj(x) · F(x) ≡ 0, which might appear to be introducing

an unnessecary complication. However later – in §A.2 – it will become clear that the form
of that last term, which seems unnecessary in the current formulation, is crucial for the
preservation of certain vital conservative properties when particular approximations are
invoked. We use this identity to add

∑
i,j = 0 into Eq. 31. It may appear to be an unnecessary

complication, but as can be seen in the next step, it allows us to rewrite the Eq. 31 in a
manifestly symmetric form, from which the local conservation follows. This is a crucial
step that provide us with the leeway to approximate spatial integrals with some form of a
numerical quadrature without being worried that this fundamental symmetry is broken. An
example of this approximation is shown in §A.2.

To proceed further, we rewrite the double sum in the following form∑
i,j

ψi(x)(ϕj − ϕi)∇ψj(x) · F(x) =
∑
i,j

ϕi(ψj(x)∇ψi(x)− ψi(x)∇ψj(x)) · F(x), (33)

where to obtain this expression the indices i and j have exchanged places. Substituting this
expression into the integral above, we obtain∫
∇ϕ ·F(x) dV =

∫ ∑
i,j

ϕi [ψj(x)∇ψi(x)− ψi(x)∇ψj(x)] ·F(x) dV =
∑
i,j

ϕi

∫
F(x) ·dΣij .

(34)
The integral on the right-hand side can be interpreted as a surface integral over a virtual
boundary between particle i and j. As a result, we can define an effective inter-particle
surface as:

Aij =

∫
dΣij =

∫
[ψj(x)∇ψi(x)− ψi(x)∇ψj(x)] dV. (35)

Therefore, by analogy with Eq. 20 and Eq. 24 we write∫
∇ϕ · F(x) dV =

∑
i,j

ϕi

∫
F(x) · dΣij =

∑
i,j

ϕi (F ·A)ij . (36)

Here, we can also use a second-order approximation to the last integral by writing (F·A)ij ≈
Fij ·Aij = FnijAij , where Fnij is a projection of flux onto surface normal evaluated at the
centroid of the overlapping regions. For Lagrangian fluid dynamics, this step is usually not
used because we can compute fluxes directly at each of the particle’s location. However,
when a mesh-less method is used in context of a Godunov scheme, the available information
is usually an inter-particle (or inter-cell) flux projected onto the face normal. This flux is
the evaluated at the centroid of the overlapping region and then multiplied by the effective
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area of two particles to achieve second order accuracy (e.g. Vila (1999); Gaburov & Nitadori
(2011)).

To complete the derivation, we apply spatial discretization to the first term inside inte-
gral in Eq. 28. Here, we insert 1 =

∑
i ψi(x) inside the integrand to obtain∫

(ϕ̇q dV ) dt =

∫ (∫
ϕ̇q
∑
i

ψi(x) dV

)
dt ≈

∫ (∑
i

ϕ̇iqi

[∫
ψi(x) dV

])
dt

=

∫ (∑
i

ϕ̇iqiVi

)
dt, (37)

where in the approximation step we applied one-point quadrature to the spatial integral,
with qi and ϕi located at the particle’s location. Next, we apply integration by parts to the
right hand side to obtain∫ (∑

i

dϕi

dt
qi Vi

)
dt =

∑
i

∫ (
d

dt
(ϕi qi Vi)

)
dt−

∫ (∑
i

d

dt
(qiVi)ϕi

)
dt (38)

The first term is an integral that depends only on the time-domain boundaries, which we
set equal to zero. Therefore we are left with only the second term. Combining this together
with Eq. 36, we obtain the following spatially discrete form of Eq. 28

∫
dt
∑
i

ϕi

− d

dt
(qiVi)−

∑
j

(F ·A)ij + SiVi

 = 0. (39)

This integral must be zero for any arbitrary set of ϕi and all times. Hence the term inside
the brackets must also always be equal to zero. This leads to a spatially discrete form of
finite-volume equations on a set of particles

d

dt
(qiVi) +

∑
j

(F ·A)ij = SiVi, (40)

This equation has the same form as Eq. 21, except that here a surface element between two
particles is defined as a volume integral on the overlapping regions of the corresponding
partition of unity.

A.1.3 Derivation of SPH equations of motion

As an example of this new formalism, we use it to derive equations of Lagrangian fluid
dynamics which have the same form as the SPH equations of motion. In SPH, the partition
of unity is defined by the following expression

ψi(x) =
mi

ρ(x)
W (x− xi, h(x)), (41)

It is a simple task to check that this leads to the SPH summation identity,

ρ(x) =
∑
i

miW (x− xi, h(x)).

In the next step we evaluate effective volume of the particle using Eq. 30

Vi =

∫
ψi(x) dV =

∫
mi

ρ(x)
W (x− xi, h(x)) dV (42)

where W (x−xi, h(x)) is an SPH kernel, and h(x) is each SPH particle’s smoothing length. In
order to obtain this integral in a closed form, we approximate the kernel inside this integrand
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as a delta function, namely W (x−xi, h(x)) ≈ δ(x−xi). This permits analytical evaluation
of an SPH particle volume Vi ≈ mi/ρi, which is consistent with the usual definition of the
SPH particle number density ni = 1/Vi = ρi/mi.

To compute SPH forces, we apply a similar approximation to compute (F ·A)ij , in order
to evaluate the flux of momentum. Because SPH is a Lagrangian method, the flux of the
momentum is a diagonal tensor F = P Î. Hence we can write

(F ·A)ij =

∫
F(x) · dΣij =

∫
[ψi(x) (F(x) : ∇ψj(x))− ψj(x) (F(x) : ∇ψi(x)) ] dV

=

∫ (
mi

ρ(x)
W (x− xi, h(x))P (x)∇ψj(x)−

mj

ρ(x)
W (x− xj , h(x))P (x)∇ψi(x)

)
dV, (43)

where the“:” symbol denotes contraction of a tensor with a vector to produce another vector.
In order to be able to analytically evaluate this integral, we approximate the kernel (but
not its gradient) using Dirac’s delta function W (x − xi, h(x))∇ψj(x) ≈ δ(x − xi)∇ψj(x).
Ignoring any spatial variation in density and h inside the volume defined by the smoothing
kernel for any given particle, we obtain:

(F ·A)ij ≈
mimjPi

ρ2i
∇iW (xi − xj , hi)−

mimjPj

ρ2j
∇jW (xj − xi, hj). (44)

To obtain this equation we used an approximation to the effective volume derived above,
Vi = mi/ρi. Finally, if we substitute this approximation to (F ·A)ij into Eq. 40 (in which
we write q = ρv for the momentum), then we obtain the following result

d

dt
(mivi) = −mi

∑
j

mj

(
Pi

ρ2i
∇iWij(hi) +

Pj

ρ2j
∇jWij(hj)

)
+
miSi

ρi
. (45)

Here, we used standard SPH notation Wij(hi) = W (xi−xj , hi) and the identity ∇jW (xj−
xi, hj) = −∇jW (xi − xi, hj). Since in Lagrangian fluid dynamics the flux of mass across
cell boundaries is zero, which implies dmi/dt = 0, Eq. 45 reduces to the standard form of
the SPH equations of motion

dvi

dt
= −

∑
j

mj

(
Pi

ρ2i
∇iWij(hi) +

Pj

ρ2j
∇jWij(hj)

)
+
Si

ρi
. (46)

With a more careful analysis that takes into account variations of density inside the smooth-
ing kernel one can derive additional correction terms due to the varying smoothing length.

A.2 Conservation properties

When solving finite-volume equations, certain properties ought to be satisfied exactly by the
underlying numerical scheme as a necessary condition for obtaining the correct solution. One
of the properties of utmost importance is local conservation, which means that the amount
of a quantity q that leaves a particle (mesh cell) i in a particular direction (or through a
given surface) will be received by the relevant neighbour particle (mesh-cell) j. A careful
inspection of Eq. 40 and Eq. 24, demonstrates that the necessary and sufficient condition for
local conservation is the antisymmetry identity (F ·A)ij = −(F ·A)ji. In the case of the
SPH equations of motion, Eq. 46, it becomes clear that local conservation guarantees that
Newton’s third law is satisfied exactly for any particle distribution. The reader can now
check why we added the extra, identically zero, term to Eq. 31 in continuous form. Without
including that term then applying the approximations that lead to the SPH equations of
motion results in the violation of Newton’s third law in the final discretized equations; in
that form, Newton’s third law would only have been satisfied to the truncation error.

Another property of the equations, which we call the closure condition, is that the
vector sum of cell boundary areas (or that of the effective areas between all neighbours
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in the case of a mesh-less scheme) is identically zero,
∑
j Aij = 0. The closure condition

guarantees that the time derivatives of the relevant local quantities are always consistent
with the corresponding fluxes between the cells. For example, if the pressure is constant for
each particle or mesh cell, the net force (which is gradient of the pressure) on each particle
or mesh cell is zero for any mesh or particle distribution. While the sum

∑
j Aij = 0 can

be geometrically proven when referring to a mesh, this identity is not intuitive in case of
particles; however, it can be easily proven. Starting with Eq. 35, we write∑

j

Aij =
∑
j

∫
[ψj(x)∇ψi(x)− ψi∇ψj(x)] dV

=
∑
j

∫
[∇(ψj(x)ψi(x))− 2ψi∇ψj(x)] dV = 0. (47)

Here we applied integration by parts to the first term of the integral. Applying the diver-
gence theorem to the first integral on the right-hand side, we can rewrite it as a surface
integral over the boundary between overlapping regions of the corresponding partition of
unity. Therefore, by construction this integral vanishes, because the value of the partition
of unity at its boundary is zero. In the second term, we include the sum inside the integral,∑
j

∫
2ψi(x)∇ψj(x) = 2

∫
ψi(x)

∑
j ∇ψj(x). Applying the identity

∑
j ∇ψj(x) ≡ 0, we can

demonstrate that this term vanishes as well, therefore completing the proof that
∑
j Aij = 0

in mesh-less schemes.
The approximations that lead to Eq. 46 may result in the loss of some properties. Indeed,

while the equations maintain their local conservative character (Newton’s third law is still
exactly satisfied), the closure condition does not hold anymore. Indeed, setting Pij = P0 =
const, we obtain

d

dt
(mivi) = −miP0

∑
j

mj

(
∇iWij(hi)

ρ2i
+
∇jWij(hj)

ρ2j

)
= −miP0Ci, (48)

where Ci = 0 only when particles are distributed on a regular lattice. It is well known in
SPH that for irregular particle distributions there is a net force proportional to the mean
pressure of the system. This effect, called ‘pressure leak’, tends to regularize the particle
distribution (which in turn tends to decrease the strength of the effect). This pressure leak
can be attributed to the violation of the exact closure condition, and it becomes more
damaging with increasing degrees of particle irregularity. One manifestation of this pressure
leak is the presence of “surface tension” forces at a discontinuity in the particle distribution.
It is possible to reduce this effect by more accurate evaluation of the volumes and areas in
Eq. 42 and Eq. 43 respectively either by numerical quadratures (e.g. Junk 2002) or using an
inter-particle model for the density distribution (Inutsuka, 2002).

A.2.1 Angular momentum conservation

Spatially discrete Euler equations exactly conserve the total mass, linear momentum and
energy of the system. However, conservation of these quantities does not automatically
guarantee conservation of angular momentum, even though it is guaranteed in a continuous
approximation. Let consider a system of particles or mesh points with coordinates xi. To
check whether a discretized form of the equations conserves angular momentum, we compute∑

i

L̇i =
∑
i

d

dt
(xi ×mivi) =

∑
i

ẋi ×mivi +
∑
i

xi ×
d

dt
(mivi), (49)

where ẋi = wi is the velocity of a particle or a mesh point. Using Eq. 24 with q = ρivi
together with momentum flux form Eq 21, we obtain

d

dt
(miv

α
i ) = −

∑
j

[
(PδαβAβ)ij + (ρvα(v − w)βAβ)ij

]
= −

∑
j

[(PAα)ij + (ρvα(v −w) ·A)ij ] , (50)
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where we use Einstein summation convention over Greek indices (which here denote the
three-dimensional components of a vector). Substituting this into Eq. 49, we obtain an equa-
tion for the time evolution of the angular momentum in component form:∑

i

L̇αi = εαβγ
∑
i

miw
βvγ − εαβγ

∑
i

xβi

∑
j

[(PAγ)ij + (ρvγ(v −w) ·A)ij ] (51)

where we write a cross product of two vectors as (v × w)α = εαβγvβwγ , and εαβγ is the
three-dimensional Levi-Civita symbol. The second term in this equation can be rewritten in
the following form

εαβγ
1

2

∑
i,j

(xi − xj)β(PAγ)ij + εαβγ
1

2

∑
i,j

(xi − xj)β(ρvγ(v −w) ·A)ij . (52)

Several properties can be derived from this equation. The first term vanishes if the normal
to the surface between mesh-cell (or particles) i and j, Aij/Aij , is parallel to the their
separation vector, xi − xj . The second term, however, only automatically and generally
vanishes if the mesh points move with the fluid velocity, i.e. w = v. So, in general the
necessary condition for angular momentum conservation to be guaranteed is a Lagrangian
formulation of hydrodynamics,7 in which case we have∑

i

L̇i = −
1

2

∑
i,j

(xi − xj)× (PA)ij . (53)

It becomes clear that, in order to conserve angular momentum exactly, the normal vector
to the area between particle i and j must be directed along the line connecting these two
particles. In the mesh-based Lagrangian method that uses a Voronoi mesh (Trease, 1988; Heß
& Springel, 2010), these normal vectors are always parallel to the separation vector between
two particles, as required. In the case of mesh-less schemes, however, it cannot be proven
from Eq. 43 that (PA)ij is, in general, parallel to the separation vector. Nevertheless, the
nature of the approximation that led to the SPH equations of motion, although sacrificing
the closure condition, does guarantee exact conservation of angular momentum.

A.3 Discussion

We have presented a generic formalism for the mesh-less discretization of finite-volume
equations. Formally, the spatially discrete equations (Eq. 40) have the same form as mesh-
based equations (Eq. 24), and therefore posses the same properties, such as local conservation
and the closure condition. The former property is of the utmost importance, as the violation
of it will most likely produce incorrect results in problems involving strong shocks.

We have shown that, with few approximation, Eq. 40 reduces to the SPH equations
of motion. While the resulting equations conserve angular momentum exactly, the closure
condition is no longer satisfied for generic particle distribution. This will result in a pressure
leak effect. In a positive pressure system with a random particle distribution, this pressure
leak will tend to regularize the particle distribution such as to minimise the leak, whilst it will
cause tensile instability in the case of negative stresses. Amongst other issues, this pressure
leak causes the inability of SPH to resolve certain fluid instabilities, such as the Kelvin-
Helmholtz and Rayleigh-Taylor instabilities. A more accurate approximation Eq. 43 can
substantially reduce the damaging effects of pressure leak and the associated surface tension
forces (Inutsuka, 2002; Cha et al., 2010). Alternatively, one may apply a high order numerical
quadrature to integrate Eq. 43, and therefore enforce satisfaction of the closure conditions
to high order (Junk, 2002), but this may still result in violation of angular momentum
conservation.

7 In the special case of a cylindrical coordinate system, only the z-component of angular
momentum is conserved.
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Particle-based scheme require various approximations to derive equations that can be
numerically integrated. On the other hand, the mesh-based schemes require a rather complex
process of construction of the unstructured mesh in order to obtain the necessary geometrical
quantities. The advantage of the latter is that the geometry is exact and well-defined, which
means that local conservation and the closure condition are satisfied by construction. On the
contrary, to achieve these properties with mesh-less schemes, one needs to invoke high-order
numerical quadrature over complex spatial domains, such as the overlapping regions of two
partitions of unity; these are conceptually simple but computationally expensive. Therefore
both methods can reach comparable degrees of accuracy, and the eventual computational
cost and overall complexity of each of the methods might also be comparable. Furthermore,
as we have shown, there is no well-defined line separating the underlying principles of mesh-
based and mesh-less methods. Hence we expect that the generalisation outlined here will
help future simulations to take advantage of the best properties of both kinds of scheme.

B Analysis of energy- and angular-momentum based
parametrizations of CEE using the E–J plane

Here we illustrate the energy and angular-momentum balance at the end of CEE result-
ing from two parametrizations common in the literature (the energy formalism and the
γ-formalism). Clearly both energy conservation and angular momentum conservation should
physically take place during CEE; here we examine the relationship between these parametriza-
tions.

To compare the two prescriptions and their outcomes, it is necessary to adopt a relation-
ship between orbital energy (E) and angular momentum (J). We choose to assume that the
post-CE binaries have circular, Keplerian orbits. This seems reasonable (we do not expect
high post-CE eccentricities) and relatively robust (since, at fixed E, a non-zero eccentricity
[e] would lead to a correction in J by only a factor of

√
1− e2). So for the γ-formalism, we

take the post-CE orbital energy as it would be for a Keplerian binary (and for the energy
formalism we fix J in the same way).

We will use the following to indicate the possible post-CE states from the different
formalisms (see Figs. 7, 8 and 9):

– Black curves represent sets of possible outcomes produced by the γ-formalism, for given
fixed values of γ.

– Blue lines are the sets of outcomes produced by the energy formalism, assuming αCE = 1.

We emphasize that the above curves are not intended to represent the evolution during
CEE, but only possible final states. They could only represent the evolution during CEE
if the instantaneous value of γ or αCE is constant throughout the CE phase, which would
be extremely unexpected. Each curve represents a collection of possible final states for fixed
CE parameter (γ or αCE), where different points on these curves represent different final
remnant masses.

Note that final states higher in |E| tend to represent tighter binaries; orbital energy
increases as the period decreases.

We also use the following conventions:

– The thick red line separates the merger region from the non-merger region. This repre-
sents the condition for the remnant core to not to overfill its Roche lobe, assuming that
the remnant core does not expand upon mass loss. Since we know that a remnant core
will almost always expand (see the discussion in Deloye & Taam, 2010; Ivanova, 2011),
this definition usually represents the closest possible post-CE orbits. Realistically, the
final position of the binary should be below this line – the actual state depends on how
close the post-CE system is to being Roche-lobe filling.

– The dashed-dotted green line separates regions where the post-CE binary has more or
less orbital energy than at the start of the CE.

– The dotted green line separates the region where the post-CE system is wider (a > ai)
than at the start of the CE from the region where the separation has decreased (a < ai).
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– Thin red lines show all Keplerian solutions for the minimum and maximum possible
core masses (see below). For any given remnant mass these are straight lines on the
E–J plane.

We mark the initial state of a binary with a star. We take into account the orbital energy
Eorb,i and the rotational energy of the giant’s envelope (assumed to be synchronized with
the initial orbit), as well as the orbital angular momentum Jorb,i and angular momentum
of the giant’s envelope.

For this analysis, our choice of the lower bound on the possible core mass mc,min is the
hydrogen-exhausted core md,X (the region where X < 10−10) and is rather standard. For
the upper bound on the possible core mass mc,max we choose the minimum between the
central mass which contains less than 10% hydrogen and the bottom of the outer convective
envelope (mBCE). The solutions/outcomes for the post-CE core masses above the maximum
possible core mass (to the right of the right thin red line) are provided only to show the
behavior throughout the E–J plane, but should not be considered as physically likely final
states. (Note also that it is for those masses where the effect of remnant expansion should
be the greatest.)

Based on our assumptions, only the solutions bounded from above by the thick solid
merger line and lying within the region between minimum and maximum core masses are
expected to be permitted for a self-consistent post-CE binary unless another – currently
unidentified – energy source is available. This condition is independent of whether the
energy formalism or the γ-formalism is used.

B.1 Examining outcomes of the α-formalism in the E–J plane

As an example, we consider a binary with a giant of 2M� and a WD of 0.5M�, where the CE
is initiated when the giant is evolved to a hydrogen-exhausted core mass md,X ∼ 0.317M�
and has a radius of 23R� (see Fig. 7). In this figure, we shade the region containing the
expected range of potential core masses. As we said above, only the strip bounded from
above by the thick solid line and lying within the shaded region is permitted for a self-
consistent final post-CE binary. As was discussed in §4, even for a properly computed λ, the
final orbital separations can vary by over a factor of 10 in the region of likely core masses.

In the energy formalism, as expected, the post-CE binary can not have more energy
than the initial binary and still satisfy conservation of energy (see the dashed-dotted green
line on Fig. 7), since some energy must be used to expel the common envelope to infinity.
We can also find the position that a final binary would have if it kept the same orbital
separation, for any valid post-CE mass of the donor mc,min < md,c < md. In the absence
of another energy source, a widened orbit would violate energy conservation and so should
not be produced by this energy formalism.

The whole range of possible states for a post-CE binary described by the energy formal-
ism is bounded by the blue dashed line at the bottom, the solid red line at the top and the
shaded red area. When the CE is initialised at a different giant radius (i.e. at a different or-
bital period), and accordingly a different md,X, the picture is qualitatively similar, although
the uncertainty that is introduced by the core-mass definition could vary.

B.2 Examining outcomes of the γ-formalism in the E–J plane

Here we choose a 2M� giant, evolved to a hydrogen-exhausted core mass md,X ∼ 0.38M�
and has a radius of 86R�. This represents a common case in the study of Nelemans & Tout
(2005), where many double WD binaries have an older companion of 0.5M� and a younger
WD of 0.4M� (see Fig. 8). From Fig. 8, we see that the set of solutions for γ = 1.5 roughly
coincides with a possible final binary configuration for these particular companion masses.8

8 For clarity, we repeat that the curves represent set of possible solutions – end points –
for the outcome of CEE, not the paths taken to reach those states.
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Fig. 7 Orbital angular momentum J and energy E for a CE in a 2M� + 0.5M� binary
(rd = 23R� and the hydrogen-exhausted core md,X = 0.317M�). The black star indicates
the state of the binary at the onset of the CE. The solid line (red) shows the Keplerian
Eorb − Jorb relation for the final binary assuming that the mass of the post-CE remnant
consists of all the RG mass that was originally contained within the final Roche lobe (mRL),
in other words, the maximum possible remnant mass for this orbit. The shaded region
contains Keplerian orbits for core masses bounded by mc,min < md,c < mc,max (see the
text). A final state of the post-CE binary must lie within this area. The dashed lines (blue)
represent the set of all possible final states as per the energy formalism (being a function of
all possible core masses), for λ calculated using the stellar model and for λ = 1. The dashed-
dotted green line separates regions where the post-CE binary has more or less energy than
at the start of the CE. The dotted green line separates regions where the post-CE is wider
(a > ai) than at the start of the CE and where it shrunk (a < ai). The stellar model was
calculated using the evolutionary code described in Ivanova (2002); Ivanova & Taam (2004).

The set of γ ≈ 1.5 solutions crosses the final binary configuration at approximately the
location mandated by energy consideration. This may therefore help to explain why γ = 1.5
is successful in fitting the observed systems which are thought to be similar to this one.

We can also study the restricted set of outcomes available when CEE is limited by the
available orbital energy reservoir. We repeat this is not an assumption in the γ-formalism,
but it is important for understanding how the γ-formalism related to canonical CEE, with
a significant spiral-in, as described by the longstanding energy prescription. Here we make
use of the limiting cases defined in §5.3.1, which represent the γ-values which lead to merger
(γM) or require an additional energy source (γE).

For γ > γM = 1.505 this binary would merge as Eq. (10) predicts negative post-CE
angular momentum. For γ < γE = 1.38, Eq. (10) produces an orbital separation such that
a Keplerian post-CE binary could only be explained if some form of extra energy input was
provided to the system during a CEE. Even within this narrow range of γE < γ < γM some
outcomes would require either energy generation or would be mergers: the details depend on
the size of the core and on the exact definition of the ejected envelope. For smaller ejected
masses, the range also becomes smaller. For example, in the case when CEE removes only
the convective envelope (rather than removing the entire hydrogen burning shell to leave
only the naked core), then γ > 1.43 is required to produce a binary without apparent energy
generation and γ < 1.47 is required for the binary not to merge.

This behaviour is related to the sensitivity to the value of γ of the post-CE separations
predicted using Eq.10, as discussed in §5.2.2. For this particular binary, the change in the
input γ values by as little as δγ = 0.125, from 1.38 to 1.505, provides the difference in post-
CE binary separations for spiral-ins by a factor of 20 for the same adopted core mass; any
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Fig. 8 Orbital angular momentum and energy for a 2M� + 0.5M� binary (rd = 86R�
and md,X = 0.38M�). Thick and thin solid red lines show the only possible final binary
configurations for various adopted core masses. For comparison we also show the minimum
energy expenditures to release the envelope (blue dashed line, see also the caption of Fig. 7).
Black solid and dotted lines indicate possible final binary configurations, assuming angular
momentum is lost in accordance with the γ-formalism, where the thick black solid lines
show γE and γM, i.e the minimum and maximum γ that make a binary which avoids the
need for energy input or merger. Dotted black lines show values of γ that lead to formation
of binaries which satisfy those constraints for the full range of core mass definitions. Other
line-styles are as in Fig. 7.

Fig. 9 Left: Orbital angular momentum and energy for a 2M�+1.5M� binary (rd = 86R�
and md,X = 0.38M�). Right: Orbital angular momentum and energy for a 2M�+0.35M�
binary (rd = 86R� and md,X = 0.38M�). Line styles are as in Fig. 8.
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larger change would modify the outcome qualitatively into either a merger or an outcome
with apparent energy generation.

Now consider the same 2M� giant, with the same mc,min ∼ 0.4M�, but with a 1.5M�
companion (Fig. 9, left). This is similar to some initial binaries considered to be progenitors
for DWDs in van der Sluys et al. (2006). Assuming a spiral-in limited by the available orbital
energy, this binary could survive without merging only between γM = 2.108 and γE = 1.94
(we note that this is close to values of γ used in some similar systems in van der Sluys
et al. (2006), see their Table 6); orbital expansion happens for γ < 1.5. Taking into account
that not all of the hydrogen shell might be expelled and that the core has finite size, this
range is reduced to γ ≈ 1.99− 2.06. With γ = 1.5, the binary is even wider than it was at
the beginning — the same effect as having negative α or a stellar wind. As a consequence,
the binary becomes wider during mass loss (of course this is both legal and natural for the
γ-formalism, since it was created to model exactly such widening for the first episode of MT
in DWDs formation and includes no restrictions on the overall energy balance).

Another example involves a binary with a less massive companion (0.35M�, Fig. 9,
right). Keplerian solutions can easily be found for γ ≈ 1.36− 1.39, where the extreme cases
are γM = 1.415 and γE = 1.305. With γ = 1.5, the post-CE binary should merge if realistic
core sizes are taken into account.

We stress that the analysis in this subsection assumes constraints which are not con-
tained within the original γ-formalism, although those limits are natural ones in the absence
of an additional, currently unidentified, energy source. It also takes the standard position
that the post-CE systems have circular, Keplerian orbits. Nonetheless, we suggest that the
overall results above indicate the γ-formalism, as currently expressed, is not ideal for making
predictions about CE phases which are limited by the available orbital energy, or (similarly)
those which involve a significant spiral-in and mass loss.
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