648 research outputs found

    The onset of instability in unsteady boundary-layer separation

    Get PDF
    The process of unsteady two-dimensional boundary-layer separation at high Reynolds number is considered. Solutions of the unsteady non-interactive boundary-layer equations are known to develop a generic separation singularity in regions where the pressure gradient is prescribed and adverse. As the boundary layer starts to separate from the surface, however, the external pressure distribution is altered through viscous-inviscid interaction just prior to the formation of the separation singularity; hitherto this has been referred to as the first interactive stage. A numerical solution of this stage is obtained here in Lagrangian coordinates. The solution is shown to exhibit a high-frequency inviscid instability resulting in an immediate finite-time breakdown of this stage. The presence of the instability is confirmed through a linear stability analysis. The implications for the theoretical description of unsteady boundary-layer separation are discussed, and it is suggested that the onset of interaction may occur much sooner than previously thought

    Unsteady separation past moving surfaces

    Get PDF
    Unsteady boundary-layer development over moving walls in the limit of infinite Reynolds number is investigated using both the Eulerian and Lagrangian formulations. To illustrate general trends, two model problems are considered, namely the translating and rotating circular cylinder and a vortex convected in a uniform flow above an infinite flat plate. To enhance computational speed and accuracy for the Lagrangian formulation, a remeshing algorithm is developed. The calculated results show that unsteady separation is delayed with increasing wall speed and is eventually suppressed when the speed of the separation singularity approaches that of the local mainstream velocity. This suppression is also described analytically. Only 'upstream-slipping' separation is found to occur in the model problems. The changes in the topological features of the flow just prior to the separation that occur with increasing wall speed are discussed

    The structure of a three-dimensional turbulent boundary layer

    Get PDF
    The three-dimensional turbulent boundary layer is shown to have a self-consistent two-layer asymptotic structure in the limit of large Reynolds number. In a streamline coordinate system, the streamwise velocity distribution is similar to that in two-dimensional flows, having a defect-function form in the outer layer which is adjusted to zero at the wall through an inner wall layer. An asymptotic expansion accurate to two orders is required for the cross-stream velocity which is shown to exhibit a logarithmic form in the overlap region. The inner wall-layer flow is collateral to leading order but the influence of the pressure gradient, at large but finite Reynolds numbers, is not negligible and can cause substantial skewing of the velocity profile near the wall. Conditions under which the boundary layer achieves self-similarity and the governing set of ordinary differential equations for the outer layer are derived. The calculated solution of these equations is matched asymptotically to an inner wall-layer solution and the composite profiles so formed describe the flow throughout the entire boundary layer. The effects of Reynolds number and cross-stream pressure gradient on the cross-stream velocity profile are discussed and it is shown that the location of the maximum cross-stream velocity is within the overlap region

    Short-scale break-up in unsteady interactive layers: Local development of normal pressure gradients and vortex wind-up

    Get PDF
    Following the finite-time collapse of an unsteady interacting boundary layer (step 1), shortened length and time scales are examined here in the near-wall dynamics of transitional-turbulent boundary layers or during dynamic stall. The next two steps are described, in which (step 2) normal pressure gradients come into operation along with a continuing nonlinear critical-layer jump and then (step 3) vortex formation is induced typically. Normal pressure gradients enter in at least two ways, depending on the internal or external flow configuration. This yields for certain internal flows an extended KdV equation with an extra nonlinear integral contribution multiplied by a coefficient which is proportional to the normal rate of change of curvature of the velocity profile locally and whose sign turns out to be crucial. Positive values of the coefficient lead to a further finite-time singularity, while negative values produce a rapid secondary instability phenomenon. Zero values in contrast allow an interplay between solitary waves and wave packets to emerge at large scaled times, this interplay eventually returning the flow to its original, longer, interactive, boundary-layer scales but now coupled with multiple shorter-scale Euler regions. In external or quasi-external flows more generally an extended Benjamin–Ono equation holds instead, leading to a reversal in the roles of positive and negative values of the coefficient. The next step, 3, typically involves the strong wind-up of a local vortex, leading on to explosion or implosion of the vortex. Further discussion is also presented, including the three-dimensional setting, the computational implications, and experimental links

    Evaporation basin guidelines for disposal of saline water

    Get PDF
    The purpose of this guideline is to provide information and criteria for evaporation basin planning, design, construction, monitoring, and maintenance for purposes of disposal of water and storage of disposed salts in dryland agricultural areas of Western Australia. The application of the guidelines will assist in the management of saline discharge and the protection of natural resources. The guidelines have been tailored specifically for saline evaporation disposal sites located in the wheatbelt areas of Western Australia

    An Experimental Study of the Performance of a Subscale Kerosene - Fuelled Ejector Ramjet at Simulated Takeoff

    Get PDF
    The ejector ramjet is a rocket based combined cycle propulsion system in which a rocket and ramjet are integrated to accrue synergistic benefits. A proof-of-concept experiment to augment the thrust of a simulated rocket by the induction of air through an ejector and the subsequent afterburning of kerosene fuel in it is described. Ejector ram-jet thrust augmentation ratios of up to around 1.1 at the simulated take off conditions have been achieved. The critical effect of the operating conditions and the ejector ramjet geometry, in particular the afterburner configuration, for achieving thrust augmentation ratios greater than one have been demonstrated

    How common is germinal mosaicism that leads to premeiotic aneuploidy in the female?

    Get PDF
    PURPOSE: Molecular cytogenetic analysis has confirmed that a proportion of apparently meiotic aneuploidy may be present in the germ cells prior to the onset of meiosis, but there is no clear perception of its frequency. The aim of this review is to assess the evidence for premeiotic aneuploidy from a variety of sources to arrive at an estimate of its overall contribution to oocyte aneuploidy in humans. METHODS: Relevant scientific literature was covered from 1985 to 2018 by searching PubMed databases with search terms: gonadal/germinal mosaicism, ovarian mosaicism, premeiotic aneuploidy, meiosis and trisomy 21. Additionally, a key reference from 1966 was included. RESULTS: Data from over 9000 cases of Down syndrome showed a bimodal maternal age distribution curve, indicating two overlapping distributions. One of these matched the pattern for the control population, with a peak at about 28 years and included all cases that had occurred independently of maternal age, including those due to germinal mosaicism, about 40% of the cohort. The first cytological proof of germinal mosaicism was obtained by fluorescence in situ hybridisation analysis. Comparative genomic hybridisation analysis of oocyte chromosomes suggests an incidence of up to 15% in premeiotic oocytes. Direct investigation of fetal ovarian cells led to variable results for chromosome 21 mosaicism. CONCLUSIONS: Oocytes with premeiotic errors will significantly contribute to the high level of preimplantation and prenatal death. Data so far available suggests that, depending upon the maternal age, up to 40% of aneuploidy that is present in oocytes at the end of meiosis I may be due to germinal mosaicism

    Production of yam mosaic virus monoclonal antibodies in mice peritoneum

    Get PDF
    Yam mosaic virus (YMV) is one of the most economically important virus infecting yams. Immunoassays are routinely used for laboratory diagnosis of YMV and for certification of planting materials. However, YMV antibodies, the key reagents, needed for these immunoassays are not readily available. We describe in this paper, the production of YMV monoclonal antibodies for the detection of YMV. The monoclonal antibody was produced by immunizing six weeks old BALB/c mice with YMV hybridoma cells and tapping soft peritoneal tumor tissues for antibody. Antibody titre was determined by triple antibody sandwich-enzyme-linked immunosorbent assay (TAS-ELISA) using YMV infected yam leaves and non-infected tissue culture yam leaves. The antibody produced had a titre of 1:1,310,720 and an optimal TAS-ELISA detection dilution of 1:80,000. This high-titre YMV monoclonal antibody is useful for monitoring and certification purposes.Key words: Monoclonal antibodies, ascetic fluid, yam mosaic viru

    Problematic use of mobile phones in Australia…is it getting worse?

    Full text link
    Copyright © 2019 Oviedo-Trespalacios, Nandavar, Newton, Demant and Phillips. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Rapid technological innovations over the past few years have led to dramatic changes in today's mobile phone technology. While such changes can improve the quality of life of its users, problematic mobile phone use can result in its users experiencing a range of negative outcomes such as anxiety or, in some cases, engagement in unsafe behaviors with serious health and safety implications such as mobile phone distracted driving. The aims of the present study are two-fold. First, this study investigated the current problem mobile phone use in Australia and its potential implications for road safety. Second, based on the changing nature and pervasiveness of mobile phones in Australian society, this study compared data from 2005 with data collected in 2018 to identify trends in problem mobile phone use in Australia. As predicted, the results demonstrated that problem mobile phone use in Australia increased from the first data collected in 2005. In addition, meaningful differences were found between gender and age groups in this study, with females and users in the 18-25 year-old age group showing higher mean Mobile Phone Problem Use Scale (MPPUS) scores. Additionally, problematic mobile phone use was linked with mobile phone use while driving. Specifically, participants who reported high levels of problem mobile phone use, also reported handheld and hands-free mobile phone use while driving
    corecore