77 research outputs found

    The Ecology of a Keystone Seed Disperser, the Ant Rhytidoponera violacea

    Get PDF
    Rhytidoponera violacea (Forel) (Hymenoptera: Formicidae) is a keystone seed disperser in Kwongan heathl and habitats of southwestern Australia. Like many myrmecochorous ants, little is known about the basic biology of this species. In this study various aspects of the biology of R. violacea were examined and the researchers evaluated how these characteristics may influence seed dispersal. R. violacea nesting habits (relatively shallow nests), foraging behavior (scramble competitor and lax food selection criteria), and other life history characteristics complement their role as a mutualist that interacts with the seeds of many plant species

    Transcriptomic profiling in fins of Atlantic salmon parasitized with sea lice: evidence for an early imbalance between chalimus-induced immunomodulation and the host’s defense response

    Get PDF
    Parasitic sea lice (e.g., Lepeophtheirus salmonis) cause costly outbreaks in salmon farming. Molecular insights into parasite-induced host responses will provide the basis for improved management strategies. We investigated the early transcriptomic responses in pelvic fins of Atlantic salmon parasitized with chalimus I stage sea lice. Fin samples collected from non-infected (i.e., pre-infected) control (PRE) and at chalimus-attachment sites (ATT) and adjacent to chalimus-attachment sites (ADJ) from infected fish were used in profiling global gene expression using 44K microarrays. We identified 6568 differentially expressed probes (DEPs, FDR p L. salmonis

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments

    The Efficacy of Emamectin Benzoate against Infestations of Lepeophtheirus salmonis on Farmed Atlantic Salmon (Salmo salar L) in Scotland, 2002–2006

    Get PDF
    Infestations of the parasitic copepod Lepeophtheirus salmonis, commonly referred to as sea lice, represent a major challenge to commercial salmon aquaculture. Dependence on a limited number of theraputants to control such infestations has led to concerns of reduced sensitivity in some sea lice populations. This study investigates trends in the efficacy of the in-feed treatment emamectin benzoate in Scotland, the active ingredient most widely used across all salmon producing regions. Study data were drawn from over 50 commercial Atlantic salmon farms on the west coast of Scotland between 2002 and 2006. An epi-informatics approach was adopted whereby available farm records, descriptive epidemiological summaries and statistical linear modelling methods were used to identify factors that significantly affect sea lice abundance following treatment with emamectin benzoate (SLICEH, Schering Plough Animal Health). The results show that although sea lice infestations are reduced following the application of emamectin benzoate, not all treatments are effective. Specifically there is evidence of variation across geographical regions and a reduction in efficacy over time. Reduced sensitivity and potential resistance to currently available medicines are constant threats to maintaining control of sea lice populations on Atlantic salmon farms. There is a need for on-going monitoring of emamectin benzoate treatment efficacy together with reasons for any apparent reduction in performance. In addition, strategic rotation of medicines should be encouraged and empirical evidence for the benefit of such strategies more fully evaluated

    Monitoring hunted species of cultural significance: Estimates of trends, population sizes and harvesting rates of flying-fox (Pteropus sp.) in New Caledonia

    No full text
    International audienceAssessing population trends and their underlying factors is critical to propose efficient conservation actions. This assessment can be particularly challenging when dealing with highly mobile, shy and nocturnal animals such as flying-foxes. Here we investigated the dynamics of hunted populations of Pteropus ornatus and P. tonganus in the Northern Province of New Caledonia. First, an ethno-ecological survey involving 219 local experts identified 494 flying-fox roosts. Current status was assessed for 379 of them, among which 125 were no longer occupied, representing a loss of 33% over ca. 40 years. Second, species-specific counts conducted at 35 roosts, and a sample of animals killed by hunters, revealed that the endemic species, P. ornatus, was dominant (68.5%). Between 2010 and 2016, 30 roosts were counted annually during the pre-parturition period. Roosts size averaged 1,425 ± 2,151 individuals (N = 180 counts) and showed high among-year variations (roost-specific CV = 37-162%). If we recorded significant inter-annual variation, we did not detect a significant decline over the 7-yr period, although one roost went possibly extinct. Population size of the two species combined was estimated at 338,000−859,000 individuals distributed over ca. 400 roosts in the Northern Province. Flying-foxes are popular game species and constitute traditional food for all communities of New Caledonia. Annual bags derived from a food survey allowed us to estimate harvesting rates at 5-14%. Such a level of harvesting for species with a 'slow' demography, the occurrence of poaching and illegal trade, suggest the current species use might not be sustainable and further investigations are critically needed. PLOS ONE | https://doi.org/10.1371/journal.pone
    corecore