20 research outputs found
Multiwavelength Observations of Pulsar Wind Nebulae
The extended nebulae formed as pulsar winds expand into their surroundings
provide information about the composition of the winds, the injection history
from the host pulsar, and the material into which the nebulae are expanding.
Observations from across the electromagnetic spectrum provide constraints on
the evolution of the nebulae, the density and composition of the surrounding
ejecta, the geometry of the central engines, and the long-term fate of the
energetic particles produced in these systems. Such observations reveal the
presence of jets and wind termination shocks, time-varying compact emission
structures, shocked supernova ejecta, and newly formed dust. Here I provide a
broad overview of the structure of pulsar wind nebulae, with specific examples
from observations extending from the radio band to very-high-energy gamma-rays
that demonstrate our ability to constrain the history and ultimate fate of the
energy released in the spin-down of young pulsars.Comment: 20 pages, 11 figures. Invited review to appear in Proc. of the
inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their
Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space
Science series
MHD models of Pulsar Wind Nebulae
Pulsar Wind Nebulae (PWNe) are bubbles or relativistic plasma that form when
the pulsar wind is confined by the SNR or the ISM. Recent observations have
shown a richness of emission features that has driven a renewed interest in the
theoretical modeling of these objects. In recent years a MHD paradigm has been
developed, capable of reproducing almost all of the observed properties of
PWNe, shedding new light on many old issues. Given that PWNe are perhaps the
nearest systems where processes related to relativistic dynamics can be
investigated with high accuracy, a reliable model of their behavior is
paramount for a correct understanding of high energy astrophysics in general. I
will review the present status of MHD models: what are the key ingredients,
their successes, and open questions that still need further investigation.Comment: 18 pages, 5 figures, Invited Review, Proceedings of the "ICREA
Workshop on The High-Energy Emission from Pulsars and their Systems", Sant
Cugat, Spain, April 12-16, 201
A systematic review of the association between emotions and eating behaviour in normal and overweight adult populations
A systematic review was completed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search of four electronic databases (2004–2015) yielded 60,017 articles, of which 29 met inclusion criteria. Included studies performed poorly on data quality analysis in terms of randomisation and controlling for confounding factors. Participant’s body mass index scores range from 19.73 (standard deviation?=?1.54) to 28.4 (standard deviation?=?1.4) kg/m2. Where positive and negative affects were compared, food was more likely to be consumed in response to positive affect. With regard to discrete emotions; stress, depression and sadness consistently elicited eating behaviours that fall outside of nutritional recommendations (e.g. increased food intake or poor nutritional food choices). The role of moderators including individual differences in dietary restraint and emotional eating, as well as methodological considerations, such as means of eliciting and measuring emotions, may account for equivocality with regard to some emotion and eating associations. This article concludes with recommendations for future research and implications for practice
Supernova remnants: the X-ray perspective
Supernova remnants are beautiful astronomical objects that are also of high
scientific interest, because they provide insights into supernova explosion
mechanisms, and because they are the likely sources of Galactic cosmic rays.
X-ray observations are an important means to study these objects.And in
particular the advances made in X-ray imaging spectroscopy over the last two
decades has greatly increased our knowledge about supernova remnants. It has
made it possible to map the products of fresh nucleosynthesis, and resulted in
the identification of regions near shock fronts that emit X-ray synchrotron
radiation.
In this text all the relevant aspects of X-ray emission from supernova
remnants are reviewed and put into the context of supernova explosion
properties and the physics and evolution of supernova remnants. The first half
of this review has a more tutorial style and discusses the basics of supernova
remnant physics and thermal and non-thermal X-ray emission. The second half
offers a review of the recent advances.The topics addressed there are core
collapse and thermonuclear supernova remnants, SN 1987A, mature supernova
remnants, mixed-morphology remnants, including a discussion of the recent
finding of overionization in some of them, and finally X-ray synchrotron
radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2
column-layout. 78 pages, 42 figures. This replaced version has some minor
language edits and several references have been correcte