29 research outputs found

    The age distribution of global soil carbon inferred from radiocarbon measurements

    No full text
    Soils contain more carbon than the atmosphere and vegetation combined. An increased flow of carbon from the atmosphere into soil pools could help mitigate anthropogenic emissions of carbon dioxide and climate change. Yet we do not know how quickly soils might respond because the age distribution of soil carbon is uncertain. Here we used 789 radiocarbon (∆14C) profiles, along with other geospatial information, to create globally gridded datasets of mineral soil ∆14C and mean age. We found that soil depth is a primary driver of ∆14C, whereas climate (for example, mean annual temperature) is a major control on the spatial pattern of ∆14C in surface soil. Integrated to a depth of 1 m, global soil carbon has a mean age of 4,830 ± 1,730 yr, with older carbon in deeper layers and permafrost regions. In contrast, vertically resolved land models simulate ∆14C values that imply younger carbon ages and a more rapid carbon turnover. Our data-derived estimates of older mean soil carbon age suggest that soils will accumulate less carbon than predicted by current Earth system models over the twenty-first century. Reconciling these models with the global distribution of soil radiocarbon will require a better representation of the mechanisms that control carbon persistence in soils

    No differences in soil carbon stocks across the tree line in the Peruvian Andes

    No full text
    Reliable soil organic carbon (SOC) stock measurements of all major ecosystems are essential for predicting the influence of global warming on global soil carbon pools, but hardly any detailed soil survey data are available for tropical montane cloud forests (TMCF) and adjacent high elevation grasslands above (puna). TMCF are among the most threatened of ecosystems under current predicted global warming scenarios. We conducted an intensive soil sampling campaign extending 40 km along the tree line in the Peruvian Andes between 2994 and 3860 m asl to quantify SOC stocks of TMCF, puna grassland, and shrubland sites in the transition zone between the two habitats. SOC stocks from the soil surface down to the bedrock averaged (±standard error SE) 11.8 (±1.5, N = 24) kg C/m2 in TMCF, 14.7 (±1.4, N = 9) kg C/m2 in the shrublands and 11.9 (±0.8, N = 35) kg C/m2 in the grasslands and were not significantly different (P > 0.05 for all comparisons). However, soil profile analysis revealed distinct differences, with TMCF profiles showing a uniform SOC distribution with depth, shrublands a linear decrease, and puna sites an exponential decrease in SOC densities with soil depth. Organic soil layer thickness reached a maximum (~70 cm) at the upper limit of the TMCF and declined with increasing altitude toward puna sites. Within TMCF, no significant increase in SOC stocks with increasing altitude was observed, probably because of the large variations among SOC stocks at different sites, which in turn were correlated with spatial variation in soil depth
    corecore