87 research outputs found
The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.
Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex
Grading systems in head and neck dysplasia: their prognostic value, weaknesses and utility
Contains fulltext :
80594.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Grading of dysplasia, including head and neck lesions, continues to be a hotly debated subject. It is subjective and lacks intra- and inter-observer reproducibility due to the insufficiency of validated morphological criteria and the biological nature of dysplasia. Moreover, due to the absence of a consensus, several systems are currently employed. OBJECTIVES: The aims of this review are to:1) Highlight the significance of dysplasia and the importance of a valid method for assessing precursor lesions of the head and neck.2) Review the different histopathological classification systems for grading intraepithelial lesions of the head and neck.3) Discuss and review quality requirements for these grading systems. CONCLUSION: Regarding the different classification systems, data concerning the WHO classification system are the most available in current literature. There is no simple relationship or overlapping between the classification systems. Further studies should be done to see whether other systems have advantages above the current WHO system and to discover indications that could lead to an universal classification system for intraepithelial lesions of the head and neck
- …