26 research outputs found

    Genetic variability of populations of Nyssomyia neivai in the Northern State of Paraná, Brazil

    Get PDF
    ABSTRACT The genetic study of sandfly populations needs to be further explored given the importance of these insects for public health. Were sequenced the NDH4 mitochondrial gene from populations of Nyssomyia neivai from Doutor Camargo, Lobato, Japira, and Porto Rico, municipalities in the State of Paraná, Brazil, to understand the genetic structure and gene flow. Eighty specimens of Ny. Neivai were sequenced, 20 from each municipality, and 269 base pairs were obtained. A total of 27 haplotypes and 28 polymorphic sites were found, along with a haplotypic diversity of 0.80696 and a nucleotide diversity of 0.00567. Haplotype H5, with 33 specimens, was the most common among the four populations. Only haplotypes H5 and H7 were present in all four populations. The population from Doutor Camargo showed the highest genetic diversity, and only this population shared haplotypes with those from the other municipalities. The highest number of haplotypes was sheared with Lobato which also had the highest number of unique haplotypes. This probably occurred because of constant anthropic changes that happened in the environment during the first half of the twentieth century, mainly after 1998. There was no significant correlation between genetic and geographical distances regarding these populations. However, the highest genetic and geographical distances, and the lowest gene flow were observed between Japira and Porto Rico. Geographical distance is a possible barrier between these municipalities through the blocking of haplotype sharing

    Synoptic Lagrangian maps: application to surface transport in Monterey Bay

    No full text
    Here we report on an effort to describe in detail the evolution of surface water particles in Monterey Bay from the time they first enter until the time they leave. The data used for this study are objective mappings from hourly surface currents obtained from high frequency (HF) radar measurements in Monterey Bay for the period 2 June through 4 August 1999. The basic concept is simple: compute the origin and fate of a large number of particles for every hour during the analysis period. However, analyzing and displaying the enormous amount of computed trajectory information required a new data compression technique: synoptic Lagrangian maps produced by representing each trajectory by its origin/fate and its residence time. The results show unexpected complexity and variability not apparent in the Eulerian current archive. For example, the fraction of particles that escaped to the open ocean during this period varied from about 17 to more than 92 percent. Mean particle residence times ranged from 4.5 to 11 days. The distribution of particle residence times and transport pathways varied over time scales from hours to weeks, and space scales from 2 to 40 km. The wide range of variability in particle properties reported here shows that surface transport studies in Monterey Bay require detailed wind and tidal current information over the entire bay, as well as information about the flow along the open ocean boundary. 1
    corecore