41 research outputs found

    A Graph Signal Processing Perspective on Functional Brain Imaging

    No full text
    Modern neuroimaging techniques provide us with unique views on brain structure and function; i.e., how the brain is wired, and where and when activity takes place. Data acquired using these techniques can be analyzed in terms of its network structure to reveal organizing principles at the systems level. Graph representations are versatile models where nodes are associated to brain regions and edges to structural or functional connections. Structural graphs model neural pathways in white matter, which are the anatomical backbone between regions. Functional graphs are built based on functional connectivity, which is a pairwise measure of statistical interdependency between pairs of regional activity traces. Therefore, most research to date has focused on analyzing these graphs reflecting structure or function. Graph signal processing (GSP) is an emerging area of research where signals recorded at the nodes of the graph are studied atop the underlying graph structure. An increasing number of fundamental operations have been generalized to the graph setting, allowing to analyze the signals from a new viewpoint. Here, we review GSP for brain imaging data and discuss their potential to integrate brain structure, contained in the graph itself, with brain function, residing in the graph signals. We review how brain activity can be meaningfully filtered based on concepts of spectral modes derived from brain structure. We also derive other operations such as surrogate data generation or decompositions informed by cognitive systems. In sum, GSP offers a novel framework for the analysis of brain imaging data

    Modular Brain Network Organization Predicts Response to Cognitive Training in Older Adults

    No full text
    Cognitive training interventions are a promising approach to mitigate cognitive deficits common in aging and, ultimately, to improve functioning in older adults. Baseline neural factors, such as properties of brain networks, may predict training outcomes and can be used to improve the effectiveness of interventions. Here, we investigated the relationship between baseline brain network modularity, a measure of the segregation of brain sub-networks, and training-related gains in cognition in older adults. We found that older adults with more segregated brain sub-networks (i.e., more modular networks) at baseline exhibited greater training improvements in the ability to synthesize complex information. Further, the relationship between modularity and training-related gains was more pronounced in sub-networks mediating "associative" functions compared with those involved in sensory-motor processing. These results suggest that assessments of brain networks can be used as a biomarker to guide the implementation of cognitive interventions and improve outcomes across individuals. More broadly, these findings also suggest that properties of brain networks may capture individual differences in learning and neuroplasticity. Trail Registration: ClinicalTrials.gov, NCT#00977418

    Controllability of structural brain networks

    Get PDF
    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function
    corecore