51 research outputs found

    Differential Expression of Cytokines in Response to Respiratory Syncytial Virus Infection of Calves with High or Low Circulating 25-Hydroxyvitamin D3

    Get PDF
    Deficiency of serum levels of 25-hydroxyvitamin D3 has been related to increased risk of lower respiratory tract infections in children. Respiratory syncytial virus (RSV) is a leading cause of low respiratory tract infections in infants and young children. The neonatal calf model of RSV infection shares many features in common with RSV infection in infants and children. In the present study, we hypothesized that calves with low circulating levels of 25-hydroxyvitamin D3 (25(OH)D3) would be more susceptible to RSV infection than calves with high circulating levels of 25(OH)D3. Calves were fed milk replacer diets with different levels of vitamin D for a 10 wk period to establish two treatment groups, one with high (177 ng/ml) and one with low (32.5 ng/ml) circulating 25(OH)D3. Animals were experimentally infected via aerosol challenge with RSV. Data on circulating 25(OH)D3 levels showed that high and low concentrations of 25(OH)D3 were maintained during infection. At necropsy, lung lesions due to RSV were similar in the two vitamin D treatment groups. We show for the first time that RSV infection activates the vitamin D intracrine pathway in the inflamed lung. Importantly, however, we observed that cytokines frequently inhibited by this pathway in vitro are, in fact, either significantly upregulated (IL-12p40) or unaffected (IFN-γ) in the lungs of RSV-infected calves with high circulating levels of 25(OH)D3. Our data indicate that while vitamin D does have an immunomodulatory role during RSV infection, there was no significant impact on pathogenesis during the early phases of RSV infection. Further examination of the potential effects of vitamin D status on RSV disease resolution will require longer-term studies with immunologically sufficient and deficient vitamin D levels

    Proteomic Analyses of Host and Pathogen Responses during Bovine Mastitis

    Get PDF
    The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced

    Reconstruction of a pathway of antigen processing and class II MHC peptide capture

    Full text link
    Endocytosed antigens are proteolytically processed and small amounts of peptides captured by class II MHC molecules. The details of antigen proteolysis, peptide capture and how destruction of T-cell epitopes is avoided are incompletely understood. Using the tetanus toxin antigen, we show that the introduction of 3-6 cleavage sites is sufficient to trigger a partially unfolded conformation able to bind to class II MHC molecules. The known locations of T-cell epitopes and protease cleavage sites predict that large domains of processed antigen (8-35kDa) are captured under these conditions. Remarkably, when antigen is bound to the B-cell antigen receptor (BCR), processing can trigger a concerted 'hand-over' reaction whereby BCR-associated processed antigen is captured by neighbouring class II MHC molecules. Early capture of minimally processed antigen and confinement of the processing and class II MHC loading reaction to the membrane plane may improve the likelihood of T-cell epitope survival in the class II MHC pathway and may help explain the reciprocal relationships observed between B- and T-cell epitopes in many protein antigens and autoantigen

    Changing trends in mastitis

    Get PDF
    <p>Abstract</p> <p>The global dairy industry, the predominant pathogens causing mastitis, our understanding of mastitis pathogens and the host response to intramammary infection are changing rapidly. This paper aims to discuss changes in each of these aspects. Globalisation, energy demands, human population growth and climate change all affect the dairy industry. In many western countries, control programs for contagious mastitis have been in place for decades, resulting in a decrease in occurrence of <it>Streptococcus agalactiae </it>and <it>Staphylococcus aureus </it>mastitis and an increase in the relative impact of <it>Streptococcus uberis </it>and <it>Escherichia coli </it>mastitis. In some countries, <it>Klebsiella </it>spp. or <it>Streptococcus dysgalactiae </it>are appearing as important causes of mastitis. Differences between countries in legislation, veterinary and laboratory services and farmers' management practices affect the distribution and impact of mastitis pathogens. For pathogens that have traditionally been categorised as contagious, strain adaptation to human and bovine hosts has been recognised. For pathogens that are often categorised as environmental, strains causing transient and chronic infections are distinguished. The genetic basis underlying host adaptation and mechanisms of infection is being unravelled. Genomic information on pathogens and their hosts and improved knowledge of the host's innate and acquired immune responses to intramammary infections provide opportunities to expand our understanding of bovine mastitis. These developments will undoubtedly contribute to novel approaches to mastitis diagnostics and control.</p

    Energy and protein effects on the immune system

    No full text
    We will provide an overview of the effects of energy and protein status on the immune system, with a particular focus on the periparturient dairy cow. Recent studies have shown a significant component of the leukocyte proteome is committed to energy metabolism and cell signalling machinery. The various proteins involved in enabling and maintaining leukocyte function represent a demand on the host's protein metabolism. As part of this discussion we will focus on metabolic challenges facing the transition cow and how milk production influences metabolism and immune function. We also know there is.considerable genetic control over the immune system capacity to function. There is as much genetic difference in immune function during the periparturient period between cows of average milk production capability as there is between cows of high milk production capacity. Therefore, very high milk production will not likely dictate that a cow will experience a greater magnitude or duration of immune suppression than a lower producing cow. It is more likely the inability of individual cows to adapt to the metabolic demands of milk production dictates the degree and duration of immune suppression experienced at calving

    Cumulative physiological events influence the inflammatory response of the bovine udder to Escherichia coli infections during the transition period

    No full text
    A high proportion of intramammary coliform infections present at parturition develop disease characterized by severe inflammatory signs and sepsis during the first 60 to 70 d of lactation. In the lactating bovine mammary gland, the innate immune system plays a critical role in determining the outcome of these infections. Since the beginning of the 1990s, research has increased significantly on bovine mammary innate defense mechanisms in connection with the pathogenesis of coliform mastitis. Neutrophils are key effector cells of the innate immune response to intramammary infection, and their function is influenced by many physiological events that occur during the transition period. Opportunistic infections occur when the integrity of the host immune system is compromised by physical and physiological conditions that make the host more susceptible. The innate immune system of many periparturient cows is immunocompromised. It is unlikely that periparturient immunosuppression is the result of a single physiological factor; more likely, several entities act in concert, with profound effects on the function of many organ systems of the periparturient dairy cow. Their defense system is unable to modulate the complex network of innate immune responses, leading to incomplete resolution of the pathogen and the inflammatory reaction. During the last 30 yr, most efforts have been focused on neutrophil diapedesis, phagocytosis, and bacterial killing. How these functions modulate the clinical outcome of coliform mastitis, and how they can be influenced by hormones and metabolism has been the subject of intensive research and is the focus of this review. The afferent (sensing) arm of innate immunity, which enables host recognition of a diverse array of pathogens, is the subject of intense research interest and may contribute to the variable inflammatory response to intramammary infections during different stages of lactation. The development of novel interventions that modulate the inflammatory response or contribute to the elimination of the pathogen or both may offer therapeutic promise in the treatment of mastitis in periparturient cows
    corecore