390 research outputs found

    Oligoclonal expansions of CD8(+) T cells in chronic HIV infection are antigen specific

    Get PDF
    Acute HIV infection is associated with a vigorous immune response characterized by the proliferation of selected T cell receptor V beta (BV)-expressing CD8(+) T cells. These 'expansions', which are commonly detected in the peripheral blood, can persist during chronic HIV infection and may result in the dominance of particular clones. Such clonal populations are most consistent with antigen-driven expansions of CD8(+) T cells. However, due to the difficulties in studying antigen-specific T cells in vivo, it has been hard to prove that oligoclonal BV expansions are actually HIV specific. The use of tetrameric major histocompatibility complex-peptide complexes has recently enabled direct visualization of antigen-specific T cells ex vivo but has not provided information on their clonal composition. We have now made use of these tetrameric complexes in conjunction with anti-BV chain-specific monoclonal antibodies and analysis of cytotoxic T lymphocyte lines/clones to show that chronically clonally expanded CD8(+) T cells are HIV specific in vivo

    Mutual Information Decay Curves and Hyper-Parameter Grid Search Design for Recurrent Neural Architectures

    Get PDF
    We present an approach to design the grid searches for hyper-parameter optimization for recurrent neural architectures. The basis for this approach is the use of mutual information to analyze long distance dependencies (LDDs) within a dataset. We also report a set of experiments that demonstrate how using this approach, we obtain state-of-the-art results for DilatedRNNs across a range of benchmark datasets.Comment: Published at the 27th International Conference on Neural Information Processing, ICONIP 2020, Bangkok, Thailand, November 18-22, 2020. arXiv admin note: text overlap with arXiv:1810.0296

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    High-Throughput Sequencing of mGluR Signaling Pathway Genes Reveals Enrichment of Rare Variants in Autism

    Get PDF
    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism

    Tales from the Drop Zone: roles, risks and dramaturgical dilemmas

    Get PDF
    This paper critically revisits conventional understandings of ethnographic fieldwork roles, arguing that representations of the covert insider as heroic and adventurous are often idealistic and unrealistic. Drawing on one of the authors’ experiences of being both a covert and overt researcher in an ethnographic study of skydiving, we identify some of the dramaturgical dilemmas that can unexpectedly affect relations with participants throughout the research process. Our overall aim is to highlight how issues of trust, betrayal, exposure and vulnerability, together with the practical considerations of field research, combine to shape the researcher’s interactional strategies of identity work

    The Secrets of a Functional Synapse – From a Computational and Experimental Viewpoint

    Get PDF
    BACKGROUND: Neuronal communication is tightly regulated in time and in space. The neuronal transmission takes place in the nerve terminal, at a specialized structure called the synapse. Following neuronal activation, an electrical signal triggers neurotransmitter (NT) release at the active zone. The process starts by the signal reaching the synapse followed by a fusion of the synaptic vesicle and diffusion of the released NT in the synaptic cleft; the NT then binds to the appropriate receptor, and as a result, a potential change at the target cell membrane is induced. The entire process lasts for only a fraction of a millisecond. An essential property of the synapse is its capacity to undergo biochemical and morphological changes, a phenomenon that is referred to as synaptic plasticity. RESULTS: In this survey, we consider the mammalian brain synapse as our model. We take a cell biological and a molecular perspective to present fundamental properties of the synapse:(i) the accurate and efficient delivery of organelles and material to and from the synapse; (ii) the coordination of gene expression that underlies a particular NT phenotype; (iii) the induction of local protein expression in a subset of stimulated synapses. We describe the computational facet and the formulation of the problem for each of these topics. CONCLUSION: Predicting the behavior of a synapse under changing conditions must incorporate genomics and proteomics information with new approaches in computational biology

    Analysis of laser radiation using the Nonlinear Fourier transform

    Get PDF
    Modern high-power lasers exhibit a rich diversity of nonlinear dynamics, often featuring nontrivial co-existence of linear dispersive waves and coherent structures. While the classical Fourier method adequately describes extended dispersive waves, the analysis of time-localised and/or non-stationary signals call for more nuanced approaches. Yet, mathematical methods that can be used for simultaneous characterisation of localized and extended fields are not yet well developed. Here, we demonstrate how the Nonlinear Fourier transform (NFT) based on the Zakharov-Shabat spectral problem can be applied as a signal processing tool for representation and analysis of coherent structures embedded into dispersive radiation. We use full-field, real-time experimental measurements of mode-locked pulses to compute the nonlinear pulse spectra. For the classification of lasing regimes, we present the concept of eigenvalue probability distributions. We present two field normalisation approaches, and show the NFT can yield an effective model of the laser radiation under appropriate signal normalisation conditions

    Glutathione S-transferase genotypes modify lung function decline in the general population: SAPALDIA cohort study

    Get PDF
    BACKGROUND: Understanding the environmental and genetic risk factors of accelerated lung function decline in the general population is a first step in a prevention strategy against the worldwide increasing respiratory pathology of chronic obstructive pulmonary disease (COPD). Deficiency in antioxidative and detoxifying Glutathione S-transferase (GST) gene has been associated with poorer lung function in children, smokers and patients with respiratory diseases. In the present study, we assessed whether low activity variants in GST genes are also associated with accelerated lung function decline in the general adult population. METHODS: We examined with multiple regression analysis the association of polymorphisms in GSTM1, GSTT1 and GSTP1 genes with annual decline in FEV1, FVC, and FEF(25–75 )during 11 years of follow-up in 4686 subjects of the prospective SAPALDIA cohort representative of the Swiss general population. Effect modification by smoking, gender, bronchial hyperresponisveness and age was studied. RESULTS: The associations of GST genotypes with FEV1, FVC, and FEF(25–75 )were comparable in direction, but most consistent for FEV1. GSTT1 homozygous gene deletion alone or in combination with GSTM1 homozygous gene deletion was associated with excess decline in FEV1 in men, but not women, irrespective of smoking status. The additional mean annual decline in FEV1 in men with GSTT1 and concurrent GSTM1 gene deletion was -8.3 ml/yr (95% confidence interval: -12.6 to -3.9) relative to men without these gene deletions. The GSTT1 effect on the FEV1 decline comparable to the observed difference in FEV1 decline between never and persistent smoking men. Effect modification by gender was statistically significant. CONCLUSION: Our results suggest that genetic GSTT1 deficiency is a prevalent and strong determinant of accelerated lung function decline in the male general population
    corecore