241 research outputs found

    Alite calcium sulfoaluminate cement: chemistry and thermodynamics

    Get PDF
    Calcium sulfoaluminate (CA)cementisabinderofincreasinginteresttothecementindustryandisundergoingrapiddevelopment.Currentformulationsdonotcontainalite;however,alitecalciumsulfoaluminate(aCA) cement is a binder of increasing interest to the cement industry and is undergoing rapid development. Current formulations do not contain alite; however, alite calcium sulfoaluminate (a-CA) cements can combine the favourable characteristics of Portland cement (PC) with those of CAcementwhilealsohavingalowercarbondioxidefootprintthanthecurrentgenerationofPCclinkers.ThispaperpresentstworesultsontheformationofaCA cement while also having a lower carbon dioxide footprint than the current generation of PC clinkers. This paper presents two results on the formation of a-CA clinkers. The first is a thermodynamic study demonstrating that the production of a-CAclinkerispossiblewithouttheuseofmineralisers,dopingwithforeignelements,orusingmultiplestagesofheating.ItisestablishedthataCA clinker is possible without the use of mineralisers, doping with foreign elements, or using multiple stages of heating. It is established that a-CA clinker can be readily produced in a standard process by controlling the oxygen and sulfur dioxide fugacity in the atmosphere. This allows for the stabilisation of ye’elimite to the higher temperatures required for alite stability. The second result establishes that when using fluorine to mineralise a-C$A clinker production, the iron content in the clinker is also an important variable. Although the exact mechanism of alite stabilisation is not known, it is shown that alite formation increases with the combination of calcium fluoride and iron (III) oxide in the mix

    The UV-SCOPE mission: ultraviolet spectroscopic characterization of planets and their environments

    Get PDF
    UV-SCOPE is a mission concept to determine the causes of atmospheric mass loss in exoplanets, investigate the mechanisms driving aerosol formation in hot Jupiters, and study the influence of the stellar environment on atmospheric evolution and habitability. As part of these investigations, the mission will generate a broad-purpose legacy database of time-domain ultraviolet (UV) spectra for nearly 200 stars and planets. The observatory consists of a 60 cm, f/10 telescope paired to a long-slit spectrograph, yielding simultaneous, almost continuous coverage between 1203 Å and 4000 Å, with resolutions ranging from 6000 to 240. The efficient instrument provides throughputs < 4% (far-UV; FUV) and < 15% (near-UV; NUV), comparable to HST/COS and much better than HST/STIS, over the same spectral range. A key design feature is the LiF prism, which serves as a dispersive element and provides high throughput even after accounting for radiation degradation. The use of two delta-doped Electron-Multiplying CCD detectors with UV-optimized, single-layer anti-reflection coatings provides high quantum efficiency and low detector noise. From the Earth-Sun second Lagrangian point, UV-SCOPE will continuously observe planetary transits and stellar variability in the full FUV-to-NUV range, with negligible astrophysical background. All these features make UV-SCOPE the ideal instrument to study exoplanetary atmospheres and the impact of host stars on their planets. UV-SCOPE was proposed to NASA as a Medium Explorer (MidEx) mission for the 2021 Announcement of Opportunity. If approved, the observatory will be developed over a 5-year period. Its primary science mission takes 34 months to complete. The spacecraft carries enough fuel for 6 years of operations

    Biospecimen Reporting for Improved Study Quality

    Full text link
    Human biospecimens are subject to a number of different collection, processing, and storage factors that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research utilizing human tissues, it is critical that information regarding the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The Biospecimen Reporting for Improved Study Quality guidelines are proposed as an important and timely resource tool to strengthen communication and publications around biospecimen-related research and help reassure patient contributors and the advocacy community that the contributions are valued and respected.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90474/1/bio-2E2010-2E0036.pd

    PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer

    Get PDF
    Tumour cells can use strategies that make them resistant to nutrient deprivation to outcompete their neighbours. A key integrator of the cell’s responses to starvation and other stresses is amino-acid-dependent mechanistic target of rapamycin complex 1 (mTORC1). Activation of mTORC1 on late endosomes and lysosomes is facilitated by amino-acid transporters within the solute-linked carrier 36 (SLC36) and SLC38 families. Here, we analyse the functions of SLC36 family member, SLC36A4, otherwise known as proton-assisted amino-acid transporter 4 (PAT4), in colorectal cancer. We show that independent of other major pathological factors, high PAT4 expression is associated with reduced relapse-free survival after colorectal cancer surgery. Consistent with this, PAT4 promotes HCT116 human colorectal cancer cell proliferation in culture and tumour growth in xenograft models. Inducible knockdown in HCT116 cells reveals that PAT4 regulates a form of mTORC1 with two distinct properties: first, it preferentially targets eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), and second, it is resistant to rapamycin treatment. Furthermore, in HCT116 cells two non-essential amino acids, glutamine and serine, which are often rapidly metabolised by tumour cells, regulate rapamycin-resistant mTORC1 in a PAT4-dependent manner. Overexpressed PAT4 is also able to promote rapamycin resistance in human embryonic kidney-293 cells. PAT4 is predominantly associated with the Golgi apparatus in a range of cell types, and in situ proximity ligation analysis shows that PAT4 interacts with both mTORC1 and its regulator Rab1A on the Golgi. These findings, together with other studies, suggest that differentially localised intracellular amino-acid transporters contribute to the activation of alternate forms of mTORC1. Furthermore, our data predict that colorectal cancer cells with high PAT4 expression will be more resistant to depletion of serine and glutamine, allowing them to survive and outgrow neighbouring normal and tumorigenic cells, and potentially providing a new route for pharmacological intervention

    Spatial Re-Establishment Dynamics of Local Populations of Vectors of Chagas Disease

    Get PDF
    Chagas disease is transmitted by blood-sucking bugs (vectors) and presents a severe public health threat in the Americas. Worldwide there are approximately 10 million people infected with Chagas disease, a disease for which there is currently no effective cure. Vector suppression is the main strategy to control the spread of this disease. Unfortunately, the vectors have been resurgent in some areas. It is important to understand the dynamics of reinfestation where it occurs. Here we show how different models fitted to patch-level bug infestation data can elucidate different aspects of re-establishment dynamics. Our results demonstrated a 6-month time lag between detection of a new infestation and dispersal events, seasonality in dispersal rates and effects of previous vector infestation on subsequent vector establishment rates. In addition we provide estimates of dispersal distances and the effect of insecticide spraying on rates of vector re-establishment. While some of our results confirm previous findings, the effects of season and previous infestation on bug establishment challenge our current understanding of T. infestans ecology and highlight important gaps in our knowledge of T. infestans dispersal

    Detection of Prion Infectivity in Fat Tissues of Scrapie-Infected Mice

    Get PDF
    Distribution of prion infectivity in organs and tissues is important in understanding prion disease pathogenesis and designing strategies to prevent prion infection in animals and humans. Transmission of prion disease from cattle to humans resulted in banning human consumption of ruminant nervous system and certain other tissues. In the present study, we surveyed tissue distribution of prion infectivity in mice with prion disease. We show for the first time detection of infectivity in white and brown fat. Since high amounts of ruminant fat are consumed by humans and also incorporated into animal feed, fat-containing tissues may pose a previously unappreciated hazard for spread of prion infection

    Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre

    Get PDF
    Ogre elements are a distinct group of plant Ty3/gypsy-like retrotransposons characterized by several specific features, one of which is a separation of the gag-pol region into two non-overlapping open reading frames: ORF2 coding for Gag-Pro, and ORF3 coding for RT/RH-INT proteins. Previous characterization of Ogre elements from several plant species revealed that part of their transcripts lacks the region between ORF2 and ORF3, carrying one uninterrupted ORF instead. In this work, we investigated a hypothesis that this region represents an intron that is spliced out from part of the Ogre transcripts as a means for preferential production of ORF2-encoded proteins over those encoded by the complete ORF2–ORF3 region. The experiments involved analysis of transcription patterns of well-defined Ogre populations in a model plant Medicago truncatula and examination of transcripts carrying dissected pea Ogre intron expressed within a coding sequence of chimeric reporter gene. Both experimental approaches proved that the region between ORF2 and ORF3 is spliced from Ogre transcripts and showed that this process is only partial, probably due to weak splice signals. This is one of very few known cases of spliced LTR retrotransposons and the only one where splicing does not involve parts of the element’s coding sequences, thus resembling intron splicing found in most cellular genes

    Evaluation of 22 genetic variants with Crohn's Disease risk in the Ashkenazi Jewish population: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Crohn's disease (CD) has the highest prevalence among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Caucasian populations (NJ). We evaluated a set of well-established CD-susceptibility variants to determine if they can explain the increased CD risk in the AJ population.</p> <p>Methods</p> <p>We recruited 369 AJ CD patients and 503 AJ controls, genotyped 22 single nucleotide polymorphisms (SNPs) at or near 10 CD-associated genes, <it>NOD2</it>, <it>IL23R</it>, <it>IRGM</it>, <it>ATG16L1</it>, <it>PTGER4</it>, <it>NKX2-3</it>, <it>IL12B</it>, <it>PTPN2</it>, <it>TNFSF15 </it>and <it>STAT3</it>, and assessed their association with CD status. We generated genetic scores based on the risk allele count alone and the risk allele count weighed by the effect size, and evaluated their predictive value.</p> <p>Results</p> <p>Three <it>NOD2 </it>SNPs, two <it>IL23R </it>SNPs, and one SNP each at <it>IRGM </it>and <it>PTGER4 </it>were independently associated with CD risk. Carriage of 7 or more copies of these risk alleles or the weighted genetic risk score of 7 or greater correctly classified 92% (allelic count score) and 83% (weighted score) of the controls; however, only 29% and 47% of the cases were identified as having the disease, respectively. This cutoff was associated with a >4-fold increased disease risk (p < 10e-16).</p> <p>Conclusions</p> <p>CD-associated genetic risks were similar to those reported in NJ population and are unlikely to explain the excess prevalence of the disease in AJ individuals. These results support the existence of novel, yet unidentified, genetic variants unique to this population. Understanding of ethnic and racial differences in disease susceptibility may help unravel the pathogenesis of CD leading to new personalized diagnostic and therapeutic approaches.</p

    Evolution of Genome Size and Complexity in Pinus

    Get PDF
    BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE: Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes
    corecore