196 research outputs found

    Inhibition of the Soluble Epoxide Hydrolase Promotes Albuminuria in Mice with Progressive Renal Disease

    Get PDF
    Epoxyeicotrienoic acids (EETs) are cytochrome P450-dependent anti-hypertensive and anti-inflammatory derivatives of arachidonic acid, which are highly abundant in the kidney and considered reno-protective. EETs are degraded by the enzyme soluble epoxide hydrolase (sEH) and sEH inhibitors are considered treatment for chronic renal failure (CRF). We determined whether sEH inhibition attenuates the progression of CRF in the 5/6-nephrectomy model (5/6-Nx) in mice. 5/6-Nx mice were treated with a placebo, an ACE-inhibitor (Ramipril, 40 mg/kg), the sEH-inhibitor cAUCB or the CYP-inhibitor fenbendazole for 8 weeks. 5/6-Nx induced hypertension, albuminuria, glomerulosclerosis and tubulo-interstitial damage and these effects were attenuated by Ramipril. In contrast, cAUCB failed to lower the blood pressure and albuminuria was more severe as compared to placebo. Plasma EET-levels were doubled in 5/6 Nx-mice as compared to sham mice receiving placebo. Renal sEH expression was attenuated in 5/6-Nx mice but cAUCB in these animals still further increased the EET-level. cAUCB also increased 5-HETE and 15-HETE, which derive from peroxidation or lipoxygenases. Similar to cAUCB, CYP450 inhibition increased HETEs and promoted albuminuria. Thus, sEH-inhibition failed to elicit protective effects in the 5/6-Nx model and showed a tendency to aggravate the disease. These effects might be consequence of a shift of arachidonic acid metabolism into the lipoxygenase pathway

    Variation in the human soluble epoxide hydrolase gene and risk of restenosis after percutaneous coronary intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Restenosis represents the major limiting factor for the long-term efficacy of percutaneous coronary intervention (PCI). Several genetic factors involved in the regulation of the vascular system have been described to play a role in the pathogenesis of restenosis. We investigated whether the <it>EPHX2 K55R </it>polymorphism, previously linked to significantly higher risk for coronary heart disease (CHD), was associated with the occurrence of restenosis after PCI. The association with incident CHD should have been confirmed and a potential correlation of the <it>EPHX2 K55R </it>variant to an increased risk of hypertension was analysed.</p> <p>Methods</p> <p>An overall cohort of 706 patients was studied: This cohort comprised of 435 CHD patients who had undergone successful PCI. Follow-up coronary angiography in all patients was performed 6 months after intervention. Another 271 patients in whom CHD had been excluded by coronary angiography served as controls. From each patient EDTA-blood was drawn at the baseline ward round. Genomic DNA was extracted from these samples and genotyping was performed by real-time PCR and subsequent melting curve analysis.</p> <p>Results</p> <p>In CHD patients 6 month follow-up coronary angiography revealed a restenosis rate of 29.4%, classified as late lumen loss as well as lumen re-narrowing ≥ 50%.</p> <p>Statistical analysis showed an equal genotype distribution in restenosis patients and non-restenosis patients (A/A 82.0% and A/G + G/G 18.0% versus A/A 82.1% and A/G + G/G 17.9%). Moreover, neither a significant difference in the genotype distribution of CHD patients and controls nor an association with increased risk of hypertension was found.</p> <p>Conclusion</p> <p>The results of the present study indicate that the <it>EPHX2 K55R </it>polymorphism is not associated with restenosis after PCI, with incidence of CHD, or with an increased risk of hypertension and therefore, can not serve as a predictor for risk of CHD or restenosis after PCI.</p

    Consequences of perinatal treatment with l-arginine and antioxidants for the renal transcriptome in spontaneously hypertensive rats

    Get PDF
    Treating spontaneously hypertensive rats (SHR) with l-arginine, taurine, and vitamins C and E (ATCE) during nephrogenesis (2 weeks before to 4 weeks after birth) persistently lowers blood pressure. Hypothetically, differential gene expression in kidney of SHR vs. normotensive Wistar–Kyoto rats (WKY) is partially corrected by maternal ATCE in SHR. Differential gene expression in 2-days, 2-weeks, and 48-week-old rats was studied using oligonucleotide chips. Transcription factor binding sites (TFBS) of differentially expressed genes were analyzed in silico. Differential gene expression varied between SHR+ATCE and SHR, suggesting both direct and indirect effects; but, few genes were modulated toward WKY level and there was little overlap between ages. TFBS analysis suggests less Elk-1-driven gene transcription in both WKY and SHR+ATCE vs. SHR at 2 days and 2 weeks. Concluding, in SHR, persistent antihypertensive effects of maternal ATCE are not primarily due to persistent corrective transcription. Less Elk-1-driven transcription at 2 days and 2 weeks may be involved

    Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors

    Get PDF
    Soluble epoxide hydrolase (sEH) is a promising therapeutic target for the treatment of hypertension, pain, and inflammation-related diseases. In order to enable the development of sEH inhibitors (sEHIs), assays are needed for determination of their potency. Therefore, we developed a new method utilizing an epoxide of arachidonic acid (14(15)-EpETrE) as substrate. Incubation samples were directly injected without purification into an online solid phase extraction (SPE) liquid chromatography electrospray ionization tandem mass spectrometry (LC–ESI–MS–MS) setup allowing a total run time of only 108 s for a full gradient separation. Analytes were extracted from the matrix within 30 s by turbulent flow chromatography. Subsequently, a full gradient separation was carried out on a 50X2.1 mm RP-18 column filled with 1.7 μm core–shell particles. The analytes were detected with high sensitivity by ESI–MS–MS in SRM mode. The substrate 14(15)-EpETrE eluted at a stable retention time of 96 ± 1 s and its sEH hydrolysis product 14,15-DiHETrE at 63 ± 1 s with narrow peak width (full width at half maximum height: 1.5 ± 0.1 s). The analytical performance of the method was excellent, with a limit of detection of 2 fmol on column, a linear range of over three orders of magnitude, and a negligible carry-over of 0.1% for 14,15-DiHETrE. The enzyme assay was carried out in a 96-well plate format, and near perfect sigmoidal dose–response curves were obtained for 12 concentrations of each inhibitor in only 22 min, enabling precise determination of IC50 values. In contrast with other approaches, this method enables quantitative evaluation of potent sEHIs with picomolar potencies because only 33 pmol L−1 sEH were used in the reaction vessel. This was demonstrated by ranking ten compounds by their activity; in the fluorescence method all yielded IC50 ≤ 1 nmol L−1. Comparison of 13 inhibitors with IC50 values >1 nmol L−1 showed a good correlation with the fluorescence method (linear correlation coefficient 0.9, slope 0.95, Spearman’s rho 0.9). For individual compounds, however, up to eightfold differences in potencies between this and the fluorescence method were obtained. Therefore, enzyme assays using natural substrate, as described here, are indispensable for reliable determination of structure–activity relationships for sEH inhibition

    In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice

    Get PDF
    We describe a two-photon microscopy-based method to evaluate the in vivo systemic transport of compounds. This method comprises imaging of the intact liver, kidney and intestine, the main organs responsible for uptake and elimination of xenobiotics and endogenous molecules. The image quality of the acquired movies was sufficient to distinguish subcellular structures like organelles and vesicles. Quantification of the movement of fluorescent dextran and fluorescent cholic acid derivatives in different organs and their sub-compartments over time revealed significant dynamic differences. Calculated half-lives were similar in the capillaries of all investigated organs but differed in the specific sub-compartments, such as parenchymal cells and bile canaliculi of the liver, glomeruli, proximal and distal tubules of the kidney and lymph vessels (lacteals) of the small intestine. Moreover, tools to image immune cells, which can influence transport processes in inflamed tissues, are described. This powerful approach provides new possibilities for the analysis of compound transport in multiple organs and can support physiologically based pharmacokinetic modeling, in order to obtain more precise predictions at the whole body scale

    Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    Get PDF
    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed

    Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors

    Get PDF
    Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)
    corecore