14 research outputs found

    Natural and Vaccine-Mediated Immunity to Salmonella Typhimurium is Impaired by the Helminth Nippostrongylus brasiliensis

    Get PDF
    The impact of exposure to multiple pathogens concurrently or consecutively on immune function is unclear. Here, immune responses induced by combinations of the bacterium Salmonella Typhimurium (STm) and the helminth Nippostrongylus brasiliensis (Nb), which causes a murine hookworm infection and an experimental porin protein vaccine against STm, were examined. Mice infected with both STm and Nb induced similar numbers of Th1 and Th2 lymphocytes compared with singly infected mice, as determined by flow cytometry, although lower levels of secreted Th2, but not Th1 cytokines were detected by ELISA after re-stimulation of splenocytes. Furthermore, the density of FoxP3+ T cells in the T zone of co-infected mice was lower compared to mice that only received Nb, but was greater than those that received STm. This reflected the intermediate levels of IL-10 detected from splenocytes. Co-infection compromised clearance of both pathogens, with worms still detectable in mice weeks after they were cleared in the control group. Despite altered control of bacterial and helminth colonization in co-infected mice, robust extrafollicular Th1 and Th2-reflecting immunoglobulin-switching profiles were detected, with IgG2a, IgG1 and IgE plasma cells all detected in parallel. Whilst extrafollicular antibody responses were maintained in the first weeks after co-infection, the GC response was less than that in mice infected with Nb only. Nb infection resulted in some abrogation of the longer-term development of anti-STm IgG responses. This suggested that prior Nb infection may modulate the induction of protective antibody responses to vaccination. To assess this we immunized mice with porins, which confer protection in an antibody-dependent manner, before challenging with STm. Mice that had resolved a Nb infection prior to immunization induced less anti-porin IgG and had compromised protection against infection. These findings demonstrate that co-infection can radically alter the development of protective immunity during natural infection and in response to immunization

    Novel Method for Differentiating Histological Types of Gastric Adenocarcinoma by Using Confocal Raman Microspectroscopy

    Get PDF
    [[abstract]]Gastric adenocarcinoma, a single heterogeneous disease with multiple epidemiological and histopathological characteristics, accounts for approximately 10% of cancers worldwide. It is categorized into four histological types: papillary adenocarcinoma (PAC), tubular adenocarcinoma (TAC), mucinous adenocarcinoma (MAC), and signet ring cell adenocarcinoma (SRC). Effective differentiation of the four types of adenocarcinoma will greatly improve the treatment of gastric adenocarcinoma to increase its five-year survival rate. We reported here the differentiation of the four histological types of gastric adenocarcinoma from the molecularly structural viewpoint of confocal Raman microspectroscopy. In total, 79 patients underwent laparoscopic or open radical gastrectomy during 2008–2011: 21 for signet ring cell carcinoma, 21 for tubular adenocarcinoma, 14 for papillary adenocarcinoma, 6 for mucinous carcinoma, and 17 for normal gastric mucosas obtained from patients underwent operation for other benign lesions. Clinical data were retrospectively reviewed from medical charts, and Raman data were processed and analyzed by using principal component analysis (PCA) and linear discriminant analysis (LDA). Two-dimensional plots of PCA and LDA clearly demonstrated that the four histological types of gastric adenocarcinoma could be differentiated, and confocal Raman microspectroscopy provides potentially a rapid and effective method for differentiating SRC and MAC from TAC or PAC[[notice]]補正完

    Intra-operative techniques to reduce the risk of capsular contracture in patients undergoing aesthetic breast augmentation – A review

    Full text link
    Background: Capsular contracture is a significant complication following aesthetic breast augmentation. Efforts to reduce this incidence have focused on the surgical approach, implant selection and IV antibiotics. Intra-operative methods to reduce the risk have had less investigation. This review focuses on these interventions and will document evidence to support pocket irrigation, nipple shields, drains and the use of an implant insertion funnel. Methods: A comprehensive review of Pubmed, Scopus and Embase was performed to identify relevant papers published since 2000. These were reviewed and pertinent papers selected. Data regarding the intervention and its impact were recorded and compared. Results: Ten relevant studies were identified. A total of 11,772 patients were included in the studies, with a pooled capsular contracture rate of 2.54%. Six papers reported the use of antibiotic irrigation, two papers reported the use of drains, two the use of an insertion funnel, two the use of povidone-iodine and one the use of nipple shields. Antibiotic irrigation was shown to reduce capsular contracture 10 fold in two papers, have no effect in one and increase it in a further paper. However these changes did not persist after multivariate analysis. Conclusions: There was limited evidence to support intra-operative techniques to reduce capsular contracture rate. Where available the literature tends to support the use of antibiotic and povidone-iodine irrigation, the use of insertion funnels and nipple shields and the avoidance of drains. However due to the poor quality of the evidence these findings should be treated cautiously. (C) 2017 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved

    IL-4Ralpha-associated antigen processing by B cells promotes immunity in Nippostrongylus brasiliensis infection.

    Get PDF
    In this study, B cell function in protective T(H)2 immunity against N. brasiliensis infection was investigated. Protection against secondary infection depended on IL-4Ralpha and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Ralpha(-)/(-) mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Ralpha expressing B cells into naive BALB/c mice, but not IL-4Ralpha or IL-13 deficient B cells, conferred protection against primary N. brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4(+) T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88(-)/(-) B cells. These data suggest TLR dependent antigen processing by IL-4Ralpha-responsive B cells producing IL-13 contribute significantly to CD4(+) T cell-mediated protective immunity against N. brasiliensis infection

    Bacterial infections and vaccines

    No full text

    Diversity and dialogue in immunity to helminths.

    No full text
    corecore