2,081 research outputs found
Interval total colorings of graphs
A total coloring of a graph is a coloring of its vertices and edges such
that no adjacent vertices, edges, and no incident vertices and edges obtain the
same color. An \emph{interval total -coloring} of a graph is a total
coloring of with colors such that at least one vertex or edge
of is colored by , , and the edges incident to each vertex
together with are colored by consecutive colors, where
is the degree of the vertex in . In this paper we investigate
some properties of interval total colorings. We also determine exact values of
the least and the greatest possible number of colors in such colorings for some
classes of graphs.Comment: 23 pages, 1 figur
Faint young Sun paradox remains
The Sun was fainter when the Earth was young, but the climate was generally
at least as warm as today; this is known as the `faint young Sun paradox'.
Rosing et al. [1] claim that the paradox can be resolved by making the early
Earth's clouds and surface less reflective. We show that, even with the
strongest plausible assumptions, reducing cloud and surface albedos falls short
by a factor of two of resolving the paradox. A temperate Archean climate cannot
be reconciled with the low level of CO2 suggested by Rosing et al. [1]; a
stronger greenhouse effect is needed.Comment: 3 pages, no figures. In press in Nature. v2 corrects typo in author
list in original submissio
Performance optimization of a leagility inspired supply chain model: a CFGTSA algorithm based approach
Lean and agile principles have attracted considerable interest in the past few decades. Industrial sectors throughout the world are upgrading to these principles to enhance their performance, since they have been proven to be efficient in handling supply chains. However, the present market trend demands a more robust strategy incorporating the salient features of both lean and agile principles. Inspired by these, the leagility principle has emerged, encapsulating both lean and agile features. The present work proposes a leagile supply chain based model for manufacturing industries. The paper emphasizes the various aspects of leagile supply chain modeling and implementation and proposes a new Hybrid Chaos-based Fast Genetic Tabu Simulated Annealing (CFGTSA) algorithm to solve the complex scheduling problem prevailing in the leagile environment. The proposed CFGTSA algorithm is compared with the GA, SA, TS and Hybrid Tabu SA algorithms to demonstrate its efficacy in handling complex scheduling problems
Topological orbital ladders
We unveil a topological phase of interacting fermions on a two-leg ladder of
unequal parity orbitals, derived from the experimentally realized double-well
lattices by dimension reduction. topological invariant originates simply
from the staggered phases of -orbital quantum tunneling, requiring none of
the previously known mechanisms such as spin-orbit coupling or artificial gauge
field. Another unique feature is that upon crossing over to two dimensions with
coupled ladders, the edge modes from each ladder form a parity-protected flat
band at zero energy, opening the route to strongly correlated states controlled
by interactions. Experimental signatures are found in density correlations and
phase transitions to trivial band and Mott insulators.Comment: 12 pages, 5 figures, Revised title, abstract, and the discussion on
Majorana numbe
SPECIAL COMMUNICATION Health Industry Practices That Create Conflicts of Interest A Policy Proposal for Academic Medical Centers
market incentives in the United States is posing extraordinary challenges to the principles of medical professionalism. Physicians’ commitment to altruism, putting the interests of the patients first, scientific integrity, and an absence of bias in medical decision making now regularly come up against financial conflicts of interest. Arguably, the most challenging and extensive of these conflicts emanate from relationships between physicians and pharmaceutical companies and medical device manufacturers. 1 As part of the health care industry
Relationship of cognitive function in patients with schizophrenia in remission to disability: a cross-sectional study in an Indian sample
Background: Cognitive deficits in various domains have been consistently replicated in patients with schizophrenia. Most studies looking at the relationship between cognitive dysfunction and functional disability are from developed countries. Studies from developing countries are few. The purpose of the present study was to compare the neurocognitive function in patients with schizophrenia who were in remission with that of normal controls and to determine if there is a relationship between measures of cognition and functional disability.
<p/>Methods: This study was conducted in the Psychiatric Unit of a General Hospital in Mumbai, India. Cognitive function in 25 patients with schizophrenia in remission was compared to 25 normal controls. Remission was confirmed using the brief psychiatric rating scale (BPRS) and scale for the assessment of negative symptoms (SANS). Subjects were administered a battery of cognitive tests covering aspects of memory, executive function and attention. The results obtained were compared between the groups. Correlation analysis was used to look for relationship between illness factors, cognitive function and disability measured using the Indian disability evaluation and assessment scale.
<p/>Results: Patients with schizophrenia showed significant deficits on tests of attention, concentration, verbal and visual memory and tests of frontal lobe/executive function. They fared worse on almost all the tests administered compared to normal controls. No relationship was found between age, duration of illness, number of years of education and cognitive function. In addition, we did not find a statistically significant relationship between cognitive function and scores on the disability scale.
<p/>Conclusion: The data suggests that persistent cognitive deficits are seen in patients with schizophrenia under remission. The cognitive deficits were not associated with symptomatology and functional disability. It is possible that various factors such as employment and family support reduce disability due to schizophrenia in developing countries like India. Further studies from developing countries are required to explore the relationship between cognitive deficits, functional outcome and the role of socio-cultural variables as protective factors
Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin
One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
The role of Comprehension in Requirements and Implications for Use Case Descriptions
Within requirements engineering it is generally accepted that in writing specifications (or indeed any requirements phase document), one attempts to produce an artefact which will be simple to comprehend for the user. That is, whether the document is intended for customers to validate requirements, or engineers to understand what the design must deliver, comprehension is an important goal for the author. Indeed, advice on producing ‘readable’ or ‘understandable’ documents is often included in courses on requirements engineering. However, few researchers, particularly within the software engineering domain, have attempted either to define or to understand the nature of comprehension and it’s implications for guidance on the production of quality requirements.
Therefore, this paper examines thoroughly the nature of textual comprehension, drawing heavily from research in discourse process, and suggests some implications for requirements (and other) software documentation. In essence, we find that the guidance on writing requirements, often prevalent within software engineering, may be based upon assumptions which are an oversimplification of the nature of comprehension. Hence, the paper examines guidelines which have been proposed, in this case for use case descriptions, and the extent to which they agree with discourse process theory; before suggesting refinements to the guidelines which attempt to utilise lessons learned from our richer understanding of the underlying discourse process theory. For example, we suggest subtly different sets of writing guidelines for the different tasks of requirements, specification and design
The electric wind of Venus: A global and persistent "polar wind"-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions
Understanding what processes govern atmospheric escape and the loss of planetary water is of paramount importance for understanding how life in the universe can exist. One mechanism thought to be important at all planets is an “ambipolar” electric field that helps ions overcome gravity. We report the discovery and first quantitative extraterrestrial measurements of such a field at the planet Venus. Unexpectedly, despite comparable gravity, we show the field to be five times stronger than in Earth's similar ionosphere. Contrary to our understanding, Venus would still lose heavy ions (including oxygen and all water-group species) to space, even if there were no stripping by the solar wind. We therefore find that it is possible for planets to lose heavy ions to space entirely through electric forces in their ionospheres and such an “electric wind” must be considered when studying the evolution and potential habitability of any planet in any star system
- …