205 research outputs found

    A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation

    Get PDF
    Nanoparticles introduced in living cells are capable of strongly promoting the aggregation of peptides and proteins. We use here molecular dynamics simulations to characterise in detail the process by which nanoparticle surfaces catalyse the self- assembly of peptides into fibrillar structures. The simulation of a system of hundreds of peptides over the millisecond timescale enables us to show that the mechanism of aggregation involves a first phase in which small structurally disordered oligomers assemble onto the nanoparticle and a second phase in which they evolve into highly ordered beta-sheets as their size increases

    Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models

    Full text link
    The distances over which biological molecules and their complexes can function range from a few nanometres, in the case of folded structures, to millimetres, for example during chromosome organization. Describing phenomena that cover such diverse length, and also time scales, requires models that capture the underlying physics for the particular length scale of interest. Theoretical ideas, in particular, concepts from polymer physics, have guided the development of coarse-grained models to study folding of DNA, RNA, and proteins. More recently, such models and their variants have been applied to the functions of biological nanomachines. Simulations using coarse-grained models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure

    Hydrodynamic Long-Time tails From Anti de Sitter Space

    Full text link
    For generic field theories at finite temperature, a power-law falloff of correlation functions of conserved currents at long times is a prediction of non-linear hydrodynamics. We demonstrate, through a one-loop computation in Einstein gravity in Anti de Sitter space, that this effect is reproduced by the dynamics of black hole horizons. The result is in agreement with the gauge-gravity correspondence.Comment: 31 pages, references adde

    Ancestral Mutation in Telomerase Causes Defects in Repeat Addition Processivity and Manifests As Familial Pulmonary Fibrosis

    Get PDF
    The telomerase reverse transcriptase synthesizes new telomeres onto chromosome ends by copying from a short template within its integral RNA component. During telomere synthesis, telomerase adds multiple short DNA repeats successively, a property known as repeat addition processivity. However, the consequences of defects in processivity on telomere length maintenance are not fully known. Germline mutations in telomerase cause haploinsufficiency in syndromes of telomere shortening, which most commonly manifest in the age-related disease idiopathic pulmonary fibrosis. We identified two pulmonary fibrosis families that share two non-synonymous substitutions in the catalytic domain of the telomerase reverse transcriptase gene hTERT: V791I and V867M. The two variants fell on the same hTERT allele and were associated with telomere shortening. Genealogy suggested that the pedigrees shared a single ancestor from the nineteenth century, and genetic studies confirmed the two families had a common founder. Functional studies indicated that, although the double mutant did not dramatically affect first repeat addition, hTERT V791I-V867M showed severe defects in telomere repeat addition processivity in vitro. Our data identify an ancestral mutation in telomerase with a novel loss-of-function mechanism. They indicate that telomere repeat addition processivity is a critical determinant of telomere length and telomere-mediated disease

    An Inducer of VGF Protects Cells against ER Stress-Induced Cell Death and Prolongs Survival in the Mutant SOD1 Animal Models of Familial ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease, and recent evidence has suggested that endoplasmic reticulum (ER) stress signaling is involved in the pathogenesis of ALS. Here we identified a small molecule, SUN N8075, which has a marked protective effect on ER stress-induced cell death, in an in vitro cell-based screening, and its protective mechanism was mediated by an induction of VGF nerve growth factor inducible (VGF): VGF knockdown with siRNA completely abolished the protective effect of SUN N8075 against ER-induced cell death, and overexpression of VGF inhibited ER-stress-induced cell death. VGF level was lower in the spinal cords of sporadic ALS patients than in the control patients. Furthermore, SUN N8075 slowed disease progression and prolonged survival in mutant SOD1 transgenic mouse and rat models of ALS, preventing the decrease of VGF expression in the spinal cords of ALS mice. These data suggest that VGF plays a critical role in motor neuron survival and may be a potential new therapeutic target for ALS, and SUN N8075 may become a potential therapeutic candidate for treatment of ALS

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Antibacterial activity of some selected medicinal plants of Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Screening of the ethnobotenical plants is a pre-requisite to evaluate their therapeutic potential and it can lead to the isolation of new bioactive compounds.</p> <p>Methods</p> <p>The crude extracts and fractions of six medicinal important plants (<it>Arisaema flavum</it>, <it>Debregeasia salicifolia</it>, <it>Carissa opaca</it>, <it>Pistacia integerrima</it>, <it>Aesculus indica</it>, and <it>Toona ciliata</it>) were tested against three Gram positive and two Gram negative ATCC bacterial species using the agar well diffusion method.</p> <p>Results</p> <p>The crude extract of <it>P. integerrima </it>and <it>A. indica </it>were active against all tested bacterial strains (12-23 mm zone of inhibition). Other four plant's crude extracts (<it>Arisaema flavum</it>, <it>Debregeasia salicifolia</it>, <it>Carissa opaca</it>, and <it>Toona ciliata</it>) were active against different bacterial strains. The crude extracts showed varying level of bactericidal activity. The aqueous fractions of <it>A. indica </it>and <it>P. integerrima </it>crude extract showed maximum activity (19.66 and 16 mm, respectively) against <it>B. subtilis</it>, while the chloroform fractions of <it>T. ciliata </it>and <it>D. salicifolia </it>presented good antibacterial activities (13-17 mm zone of inhibition) against all the bacterial cultures tested.</p> <p>Conclusion</p> <p>The methanol fraction of <it>Pistacia integerrima</it>, chloroform fractions of <it>Debregeasia salicifolia </it>&<it>Toona ciliata </it>and aqueous fraction of <it>Aesculus indica </it>are suitable candidates for the development of novel antibacterial compounds.</p

    Explaining why simple liquids are quasi-universal

    Get PDF
    It has been known for a long time that many simple liquids have surprisingly similar structure as quantified, e.g., by the radial distribution function. A much more recent realization is that the dynamics are also very similar for a number of systems with quite different pair potentials. Systems with such non-trivial similarities are generally referred to as "quasi-universal". From the fact that the exponentially repulsive pair potential has strong virial potential-energy correlations in the low-temperature part of its thermodynamic phase diagram, we here show that a liquid is quasi-universal if its pair potential can be written approximately as a sum of exponential terms with numerically large prefactors. Based on evidence from the literature we moreover conjecture the converse, i.e., that quasi-universality only applies for systems with this property

    Transbilayer Phospholipid Movements in ABCA1-Deficient Cells

    Get PDF
    Tangier disease is an inherited disorder that results in a deficiency in circulating levels of HDL. Although the disease is known to be caused by mutations in the ABCA1 gene, the mechanism by which lesions in the ABCA1 ATPase effect this outcome is not known. The inability of ABCA1 knockout mice (ABCA1−/−) to load cholesterol and phospholipids onto apoA1 led to a proposal that ABCA1 mediates the transbilayer externalization of phospholipids, an activity integral not only to the formation of HDL particles but also to another, distinct process: the recognition and clearance of apoptotic cells by macrophages. Expression of phosphatidylserine (PS) on the surface of both macrophages and their apoptotic targets is required for efficient engulfment of the apoptotic cells, and it has been proposed that ABCA1 is required for transbilayer externalization of PS to the surface of both cell types. To determine whether ABCA1 is responsible for any of the catalytic activities known to control transbilayer phospholipid movements, these activities were measured in cells from ABCA1−/− mice and from Tangier individuals as well as ABCA1-expressing HeLa cells. Phospholipid movements in either normal or apoptotic lymphocytes or in macrophages were not inhibited when cells from knockout and wildtype mice or immortalized cells from Tangier individuals vs normal individuals were compared. Exposure of PS on the surface of normal thymocytes, apoptotic thymocytes and elicited peritoneal macrophages from wildtype and knockout mice or B lymphocytes from normal and Tangier individuals, as measured by annexin V binding, was also unchanged. No evidence was found of ABCA1-stimulated active PS export, and spontaneous PS movement to the outer leaflet in the presence or absence of apoA1 was unaffected by the presence or absence of ABCA1. Normal or Tangier B lymphocytes and macrophages were also identical in their ability to serve as targets or phagocytes, respectively, in apoptotic cell clearance assays. No evidence was found to support the suggestion that ABCA1 is involved in transport to the macrophage cell surface of annexins I and II, known to enhance phagocytosis of apoptotic cells. These results show that mutations in ABCA1 do not measurably reduce the rate of transbilayer movements of phospholipids in either the engulfing macrophage or the apoptotic target, thus discounting catalysis of transbilayer movements of phospholipids as the mechanism by which ABCA1 facilitates loading of phospholipids and cholesterol onto apoA1
    • …
    corecore