10 research outputs found

    Antibacterial properties of contact defensive secretions in neotropical Crematogaster ants

    Full text link
    Crematogaster ants use their contact venoms to compete with other ants. Although those venoms are used primarily as repellent and toxic secretions, they may have other functions. The present study aimed to test the antibacterial property of abdominal venom of three neotropical Crematogaster ant species (C. distans, C. pygmaea and C. rochai) against gram-negative (Escherichia coli and Pseudomonas aeruginosa) and gram-positive (Enterococcus faecalis and Staphylococcus aureus) bacteria. Sterile filter paper was soaked with C. distans, C. pygmaea or C. rochai crude venom and placed on an agar dish that was inoculated with bacterial suspensions. The agar dish was incubated overnight at 37ºC and examined for zones of growth inhibition. For each tested venom and bacterial strain, three venom concentrations were used, with six replicates for each concentration: 1, 2 and 4 DGE (Dufour's gland equivalent). The venom of C. pygmaea, but not those of C. rochai and C. distans, inhibited the growth of all tested gram-positive and gram-negative bacterial strains. This is the first evidence of antibacterial properties of contact venoms in Crematogaster ants and it supports the claim that ant venoms are multifunctional. It is hypothesized that only C. pygmaea venom showed antibacterial activities due to its nesting habits

    A Simple Threshold Rule Is Sufficient to Explain Sophisticated Collective Decision-Making

    Get PDF
    Decision-making animals can use slow-but-accurate strategies, such as making multiple comparisons, or opt for simpler, faster strategies to find a 'good enough' option. Social animals make collective decisions about many group behaviours including foraging and migration. The key to the collective choice lies with individual behaviour. We present a case study of a collective decision-making process (house-hunting ants, Temnothorax albipennis), in which a previously proposed decision strategy involved both quality-dependent hesitancy and direct comparisons of nests by scouts. An alternative possible decision strategy is that scouting ants use a very simple quality-dependent threshold rule to decide whether to recruit nest-mates to a new site or search for alternatives. We use analytical and simulation modelling to demonstrate that this simple rule is sufficient to explain empirical patterns from three studies of collective decision-making in ants, and can account parsimoniously for apparent comparison by individuals and apparent hesitancy (recruitment latency) effects, when available nests differ strongly in quality. This highlights the need to carefully design experiments to detect individual comparison. We present empirical data strongly suggesting that best-of-n comparison is not used by individual ants, although individual sequential comparisons are not ruled out. However, by using a simple threshold rule, decision-making groups are able to effectively compare options, without relying on any form of direct comparison of alternatives by individuals. This parsimonious mechanism could promote collective rationality in group decision-making

    Tandem carrying, a new foraging strategy in ants: Description, function, and adaptive significance relative to other described foraging strategies

    No full text
    An important aspect of social insect biology lies in the expression of collective foraging strategies developed to exploit food. In ants, four main types of foraging strategies are typically recognized based on the intensity of recruitment and the importance of chemical communication. Here, we describe a new type of foraging strategy, "tandem carrying", which is also one of the most simple recruitment strategies, observed in the Ponerinae species Pachycondyla chinensis. Within this strategy, workers are directly carried individually and then released on the food resource by a successful scout. We demonstrate that this recruitment is context dependent and based on the type of food discovered and can be quickly adjusted as food quality changes. We did not detect trail marking by tandem-carrying workers. We conclude by discussing the importance of tandem carrying in an evolutionary context relative to other modes of recruitment in foraging and nest emigration. © 2011 Springer-Verlag.link_to_subscribed_fulltex

    Trail and teritorial communication in social insects

    No full text
    The social properties of insect colonies are sometimes described in seemingly contradictory terms. As pinnacles of biological complexity they are superorganisms and their emergent, colony-level characteristics are often referred to in terms of their elaborate and sophisticated nature. Yet the mechanisms that mediate social interactions and group phenomena, after empirical or theoretical analysis, are simple and parsimonious. This complexity-mediated-by-simplicity paradigm provides a heuristic approach to the analysis of the basic behavioral characteristics of the individual members of an insect society and the regulatory mechanisms of cooperative response, which are the fundamental elements from which colony level behavior is derived. Inevitably, the dissection and reconstruction of insect social organization involves semiochemicals, because the principal sensory modality of integration, social coordination, and assembly of colony-level patternsis olfaction
    corecore