19 research outputs found

    Biochemical Interaction Between Muscle and Bone: A Physiological Reality?

    No full text
    In elderly with a sedentary lifestyle, often suffering from sarcopenia to osteopenia, a training intervention could be an effective countermeasure for bone as well as muscle. Both bone and muscle adapt their mass and strength in response to mechanical loading in part via similar signaling pathways. Bone as well as muscle produces a wide variety of growth factors and cytokines in response to mechanical loading, which are important for their adaptations. It has been hypothesized that in addition to mechanical stimuli, muscle and bone communicate by these factors. Whether such biochemical interaction between both tissues is physiological is a still subject of debate. Here, we provide an overview of a range of biological factors possibly involved in the biochemical cross talk between bone and muscle. In addition, we discuss the plausibility that such interactions are involved in non-pathological adaptation of both tissues, either in paracrine or in endocrine fashion. As yet, convincing experimental evidence for biochemical cross talk between muscle and bone is very limited. Several studies have shown that muscle-derived factors are involved in bone fracture healing as well as in bone adaptation in case of muscle pathology. For involvement of cross talk between muscle and bone in physiological adaptation, there is no definite proof yet. Detailed knowledge of the biochemical interactions between muscle and bone is of clinical importance. It can help to discover pharmacological treatment to be used alone or in parallel with exercise training, thereby reducing the need for high-impact exercise. © 2014 Springer Science+Business Media New York

    Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism

    No full text

    Global Retinoblastoma Presentation and Analysis by National Income Level.

    Get PDF
    Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]). This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs

    Biochemical Interaction Between Muscle and Bone: A Physiological Reality?

    No full text
    corecore