686 research outputs found
Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms.
The changes in the evolution of the spatial and temporal distribution of the wall shear stresses (WSS) and gradients of wall shear stresses (GWSS) at different stages of the enlargement of an abdominal aortic aneurysm (AAA) are important in understanding the aetiology and progression of this vascular disease since they affect the wall structural integrity, primarily via the changes induced on the shape, functions and metabolism of the endothelial cells. Particle image velocimetry (PIV) measurements were performed in in vitro aneurysm models, while changing their geometric parameters systematically. It has been shown that, even at the very early stages of the disease, i.e. increase in the diameter ≤ 50%, the flow separates from the wall and a large vortex ring, usually followed by internal shear layers, is created. These lead to the generation of WSS that drastically differ in mean and fluctuating components from the healthy vessel. Inside the AAA, the mean WSS becomes negative along most of the aneurysmal wall and the magnitude of the WSS can be as low as 26% of the value in a healthy abdominal aorta. Two regions with distinct patterns of WSS were identified inside the AAA: the proximal region of flow detachment, characterized by oscillatory WSS of very low mean, and the region of flow reattachment, located distally, where large, negative WSS and sustained GWSS are produced as a result of the impact of the vortex ring on the wall. Comparison of the measured values of WSS and GWSS to an analytical solution, calculated for slowly expanding aneurysms shows a very good agreement, thus providing a validation of the PIV measurements
Predicting participation in group parenting education in an Australian sample: The role of attitudes, norms, and control factors
We examined the theory of planned behavior (TPB) in predicting intentions to participate in group parenting education. One hundred and seventy-six parents (138 mothers and 38 fathers) with a child under 12 years completed TPB items assessing attitude, subjective norms, perceived behavioral control (PBC), and two additional social influence variables (self-identity and group norm). Regression analyses supported the TPB predictors of participation intentions with self-identity and group norm also significantly predicting intentions. These findings offer preliminary support for the TPB, along with additional sources of social influence, as a useful predictive model of participation in parenting education
An energetic stellar outburst accompanied by circumstellar light echoes
Some classes of stars, including supernovae and novae, undergo explosive
outbursts that eject stellar material into space. In 2002, the previously
unknown variable star V838 Monocerotis brightened suddenly by a factor of about
10^4. Unlike a supernova or nova, V838 Mon did not explosively eject its outer
layers; rather, it simply expanded to become a cool supergiant with a
moderate-velocity stellar wind. Superluminal light echoes were discovered as
light from the outburst propagated into surrounding, pre-existing circumstellar
dust. Here we report high-resolution imaging and polarimetry of the light
echoes, which allow us to set direct geometric distance limits to the object.
At a distance of >6 kpc, V838 Mon at its maximum brightness was temporarily the
brightest star in the Milky Way. The presence of the circumstellar dust implies
that previous eruptions have occurred, and spectra show it to be a binary
system. When combined with the high luminosity and unusual outburst behavior,
these characteristics indicate that V838 Mon represents a hitherto unknown type
of stellar outburst, for which we have no completely satisfactory physical
explanation.Comment: To appear in Nature, March 27, 2003. 9 pages, 6 figure
Regulation of cytokinesis by spindle-pole bodies
Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Cell Biology 8 (2006): 891-893, doi:10.1038/ncb1449.In the fission yeast Schizosaccharomyces pombe, cytokinesis is thought to be controlled by the daughter spindle pole body (SPB) through a regulatory pathway, the Septation Initiation Network (SIN). Here we demonstrate that laser ablation of both but not a single SPB results in cytokinesis failure. Ablation of just the daughter SPB often leads to activation of the SIN on the mother and successful cytokinesis. Thus, either SPB can drive cytokinesis.This work was supported by National Institutes of Health grants GMS 59363 (to A.K.), GMS 69670 (to F.C), and by the Human Frontiers Science Program grant RGP0064 (to AK)
The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study
Background: Current evidence suggests sodium bicarbonate (NaHCO3) should be ingested based upon the individualised alkalotic peak of either blood pH or bicarbonate (HCO3−) because of large inter-individual variations (10–180 min). If such a strategy is to be practical, the blood analyte response needs to be reproducible. Objective: This study aimed to evaluate the degree of reproducibility of both time to peak (TTP) and absolute change in blood pH, HCO3− and sodium (Na+) following acute NaHCO3 ingestion. Methods: Male participants (n = 15) with backgrounds in rugby, football or sprinting completed six randomised treatments entailing ingestion of two doses of 0.2 g·kg−1 body mass (BM) NaHCO3 (SBC2a and b), two doses of 0.3 g·kg−1 BM NaHCO3 (SBC3a and b) or two control treatments (CON1a and b) on separate days. Blood analysis included pH, HCO3− and Na+ prior to and at regular time points following NaHCO3 ingestion over a 3-h period. Results: HCO3− displayed greater reproducibility than pH in intraclass correlation coefficient (ICC) analysis for both TTP (HCO3− SBC2 r = 0.77, P = 0.003; SBC3 r = 0.94, P < 0.001; pH SBC2 r = 0.62, P = 0.044; SBC3 r = 0.71, P = 0.016) and absolute change (HCO3− SBC2 r = 0.89, P < 0.001; SBC3 r = 0.76, P = 0.008; pH SBC2 r = 0.84, P = 0.001; SBC3 r = 0.62, P = 0.041). Conclusion: Our results indicate that both TTP and absolute change in HCO3− is more reliable than pH. As such, these data provide support for an individualised NaHCO3 ingestion strategy to consistently elicit peak alkalosis before exercise. Future work should utilise an individualised NaHCO3 ingestion strategy based on HCO3− responses and evaluate effects on exercise performance
Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats
Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses
Imaging of Four Planetary Nebulae in the Magellanic Clouds Using the Hubble Space Telescope Faint Object Camera
Using the Faint Object Camera on-board the Hubble Space Telescope, we have obtained images of four planetary nebulae (PNe) in the Magellanic Clouds, namely N2 and N5 in the SMC and N66 and N201 in the LMC. Each nebula was imaged through two narrow-band filters isolating [O III] λ5007 and Hβ, for a nominal exposure time of 1000 s in each filter. Significant detail is evident on the raw images and, after deconvolution using the Richardson-Lucy algorithm, structures as small as 0.06" are easily discernible. In [O III], SMC N5 shows a circular ring structure, with a peak-to-peak diameter of 0.26" and a FWHM of 0.35", while SMC N2 shows an elliptical ring structure with a peak-to-peak diameter of 0.26" x 0.21" (FWHM 0.40" x 0.35"). The expansion ages corresponding to the observed structures in SMC N2 and N5 are of the order of 3000 yr. Such low ages appear more easy to reconcile with helium-burning rather than hydrogen-burning central star evolutionary tracks. LMC N201 is very compact, with a FWHM of 0.21" in Hβ. The Type I PN LMC N66 is a multipolar nebula, with the brightest part having an extent of about 2" and with fainter structures extending over 4". The [O III] image reveals structures unprecedented for a planetary nebula, with several bright knots and faint loops visible outside the two main bright lobes
Surface and Temporal Biosignatures
Recent discoveries of potentially habitable exoplanets have ignited the
prospect of spectroscopic investigations of exoplanet surfaces and atmospheres
for signs of life. This chapter provides an overview of potential surface and
temporal exoplanet biosignatures, reviewing Earth analogues and proposed
applications based on observations and models. The vegetation red-edge (VRE)
remains the most well-studied surface biosignature. Extensions of the VRE,
spectral "edges" produced in part by photosynthetic or nonphotosynthetic
pigments, may likewise present potential evidence of life. Polarization
signatures have the capacity to discriminate between biotic and abiotic "edge"
features in the face of false positives from band-gap generating material.
Temporal biosignatures -- modulations in measurable quantities such as gas
abundances (e.g., CO2), surface features, or emission of light (e.g.,
fluorescence, bioluminescence) that can be directly linked to the actions of a
biosphere -- are in general less well studied than surface or gaseous
biosignatures. However, remote observations of Earth's biosphere nonetheless
provide proofs of concept for these techniques and are reviewed here. Surface
and temporal biosignatures provide complementary information to gaseous
biosignatures, and while likely more challenging to observe, would contribute
information inaccessible from study of the time-averaged atmospheric
composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets.
Fixed figure conversion error
Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm
Over the past five decades, k-means has become the clustering algorithm of
choice in many application domains primarily due to its simplicity, time/space
efficiency, and invariance to the ordering of the data points. Unfortunately,
the algorithm's sensitivity to the initial selection of the cluster centers
remains to be its most serious drawback. Numerous initialization methods have
been proposed to address this drawback. Many of these methods, however, have
time complexity superlinear in the number of data points, which makes them
impractical for large data sets. On the other hand, linear methods are often
random and/or sensitive to the ordering of the data points. These methods are
generally unreliable in that the quality of their results is unpredictable.
Therefore, it is common practice to perform multiple runs of such methods and
take the output of the run that produces the best results. Such a practice,
however, greatly increases the computational requirements of the otherwise
highly efficient k-means algorithm. In this chapter, we investigate the
empirical performance of six linear, deterministic (non-random), and
order-invariant k-means initialization methods on a large and diverse
collection of data sets from the UCI Machine Learning Repository. The results
demonstrate that two relatively unknown hierarchical initialization methods due
to Su and Dy outperform the remaining four methods with respect to two
objective effectiveness criteria. In addition, a recent method due to Erisoglu
et al. performs surprisingly poorly.Comment: 21 pages, 2 figures, 5 tables, Partitional Clustering Algorithms
(Springer, 2014). arXiv admin note: substantial text overlap with
arXiv:1304.7465, arXiv:1209.196
Multiple Invasions into Freshwater by Pufferfishes (Teleostei: Tetraodontidae): A Mitogenomic Perspective
Pufferfishes of the Family Tetraodontidae are the most speciose group in the Order Tetraodontiformes and mainly inhabit coastal waters along continents. Although no members of other tetraodontiform families have fully discarded their marine lives, approximately 30 tetraodontid species spend their entire lives in freshwaters in disjunct tropical regions of South America, Central Africa, and Southeast Asia. To investigate the interrelationships of tetraodontid pufferfishes and thereby elucidate the evolutionary origins of their freshwater habitats, we performed phylogenetic analysis based on whole mitochondrial genome sequences from 50 tetraodontid species and closely related species (including 31 newly determined sequences). The resulting phylogenies reveal that the family is composed of four major lineages and that freshwater species from the different continents are independently nested in two of the four lineages. A monophyletic origin of the use of freshwater habitats was statistically rejected, and ancestral habitat reconstruction on the resulting tree demonstrates that tetraodontids independently entered freshwater habitats in different continents at least three times. Relaxed molecular-clock Bayesian divergence time estimation suggests that the timing of these invasions differs between continents, occurring at 0–10 million years ago (MA) in South America, 17–38 MA in Central Africa, and 48–78 MA in Southeast Asia. These timings are congruent with geological events that could facilitate adaptation to freshwater habitats in each continent
- …