326 research outputs found

    Vertical current induced domain wall motion in MgO-based magnetic tunnel junction with low current densities

    Full text link
    Shifting electrically a magnetic domain wall (DW) by the spin transfer mechanism is one of the future ways foreseen for the switching of spintronic memories or registers. The classical geometries where the current is injected in the plane of the magnetic layers suffer from a poor efficiency of the intrinsic torques acting on the DWs. A way to circumvent this problem is to use vertical current injection. In that case, theoretical calculations attribute the microscopic origin of DW displacements to the out-of-plane (field-like) spin transfer torque. Here we report experiments in which we controllably displace a DW in the planar electrode of a magnetic tunnel junction by vertical current injection. Our measurements confirm the major role of the out-of-plane spin torque for DW motion, and allow to quantify this term precisely. The involved current densities are about 100 times smaller than the one commonly observed with in-plane currents. Step by step resistance switching of the magnetic tunnel junction opens a new way for the realization of spintronic memristive devices

    Electric Field Control of Spin Transport

    Full text link
    Spintronics is an approach to electronics in which the spin of the electrons is exploited to control the electric resistance R of devices. One basic building block is the spin-valve, which is formed if two ferromagnetic electrodes are separated by a thin tunneling barrier. In such devices, R depends on the orientation of the magnetisation of the electrodes. It is usually larger in the antiparallel than in the parallel configuration. The relative difference of R, the so-called magneto-resistance (MR), is then positive. Common devices, such as the giant magneto-resistance sensor used in reading heads of hard disks, are based on this phenomenon. The MR may become anomalous (negative), if the transmission probability of electrons through the device is spin or energy dependent. This offers a route to the realisation of gate-tunable MR devices, because transmission probabilities can readily be tuned in many devices with an electrical gate signal. Such devices have, however, been elusive so far. We report here on a pronounced gate-field controlled MR in devices made from carbon nanotubes with ferromagnetic contacts. Both the amplitude and the sign of the MR are tunable with the gate voltage in a predictable manner. We emphasise that this spin-field effect is not restricted to carbon nanotubes but constitutes a generic effect which can in principle be exploited in all resonant tunneling devices.Comment: 22 pages, 5 figure

    Nanomechanical Detection of Itinerant Electron Spin Flip

    Full text link
    Spin is an intrinsically quantum property, characterized by angular momentum. A change in the spin state is equivalent to a change in the angular momentum or mechanical torque. This spin-induced torque has been invoked as the intrinsic mechanism in experiments ranging from the measurements of angular momentum of photons g-factor of metals and magnetic resonance to the magnetization reversal in magnetic multi-layers A spin-polarized current introduced into a nonmagnetic nanowire produces a torque associated with the itinerant electron spin flip. Here, we report direct measurement of this mechanical torque and itinerant electron spin polarization in an integrated nanoscale torsion oscillator, which could yield new information on the itinerancy of the d-band electrons. The unprecedented torque sensitivity of 10^{-22} N m/ \sqrt{Hz} may enable applications for spintronics, precision measurements of CP-violating forces, untwisting of DNA and torque generating molecules.Comment: 14 pages, 4 figures. visit http://nano.bu.edu/ for related paper

    Evidence for reversible control of magnetization in a ferromagnetic material via spin-orbit magnetic field

    Full text link
    Conventional computer electronics creates a dichotomy between how information is processed and how it is stored. Silicon chips process information by controlling the flow of charge through a network of logic gates. This information is then stored, most commonly, by encoding it in the orientation of magnetic domains of a computer hard disk. The key obstacle to a more intimate integration of magnetic materials into devices and circuit processing information is a lack of efficient means to control their magnetization. This is usually achieved with an external magnetic field or by the injection of spin-polarized currents. The latter can be significantly enhanced in materials whose ferromagnetic properties are mediated by charge carriers. Among these materials, conductors lacking spatial inversion symmetry couple charge currents to spin by intrinsic spin-orbit (SO) interactions, inducing nonequilibrium spin polarization tunable by local electric fields. Here we show that magnetization of a ferromagnet can be reversibly manipulated by the SO-induced polarization of carrier spins generated by unpolarized currents. Specifically, we demonstrate domain rotation and hysteretic switching of magnetization between two orthogonal easy axes in a model ferromagnetic semiconductor.Comment: 10 pages including supplemental materia

    Spin Seebeck insulator

    Full text link
    Thermoelectric generation is an essential function of future energy-saving technologies. However, this generation has been an exclusive feature of electric conductors, a situation which inflicts a heavy toll on its application; a conduction electron often becomes a nuisance in thermal design of devices. Here we report electric-voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, a magnetic insulator LaY2Fe5O12 converts a heat flow into spin voltage. Attached Pt films transform this spin voltage into electric voltage by the inverse spin Hall effect. The experimental results require us to introduce thermally activated interface spin exchange between LaY2Fe5O12 and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.Comment: 19 pages, 5 figures (including supplementary information

    Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme

    Full text link
    Spin-polarised radio-frequency currents, whose frequency is equal to that of the gyrotropic mode, will cause an excitation of the core of a magnetic vortex confined in a magnetic tunnel junction. When the excitation radius of the vortex core is greater than that of the junction radius, vortex core expulsion is observed, leading to a large change in resistance, as the layer enters a predominantly uniform magnetisation state. Unlike the conventional spin-torque diode effect, this highly tunable resonant effect will generate a voltage which does not decrease as a function of rf power, and has the potential to form the basis of a new generation of tunable nanoscale radio-frequency detectors

    Chiral tunneling and the Klein paradox in graphene

    Full text link
    The so-called Klein paradox - unimpeded penetration of relativistic particles through high and wide potential barriers - is one of the most exotic and counterintuitive consequences of quantum electrodynamics (QED). The phenomenon is discussed in many contexts in particle, nuclear and astro- physics but direct tests of the Klein paradox using elementary particles have so far proved impossible. Here we show that the effect can be tested in a conceptually simple condensed-matter experiment by using electrostatic barriers in single- and bi-layer graphene. Due to the chiral nature of their quasiparticles, quantum tunneling in these materials becomes highly anisotropic, qualitatively different from the case of normal, nonrelativistic electrons. Massless Dirac fermions in graphene allow a close realization of Klein's gedanken experiment whereas massive chiral fermions in bilayer graphene offer an interesting complementary system that elucidates the basic physics involved.Comment: 15 pages, 4 figure

    Theory of current-driven motion of Skyrmions and spirals in helical magnets

    Full text link
    We study theoretically the dynamics of the spin textures, i.e., Skyrmion crystal (SkX) and spiral structure (SS), in two-dimensional helical magnets under external current. By numerically solving the Landau-Lifshitz-Gilbert equation, it is found that (i) the critical current density of the motion is much lower for SkX compared with SS in agreement with the recent experiment, (ii) there is no intrinsic pinning effect for SkX and the deformation of the internal structure of Skyrmion reduces the pinning effect dramatically, (iii) the Bragg intensity of SkX shows strong time-dependence as can be observed by neutron scattering experiment.Comment: 4 pages, 3 figure

    Aharonov-Bohm interferences from local deformations in graphene

    Full text link
    One of the most interesting aspects of graphene is the tied relation between structural and electronic properties. The observation of ripples in the graphene samples both free standing and on a substrate has given rise to a very active investigation around the membrane-like properties of graphene and the origin of the ripples remains as one of the most interesting open problems in the system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields that have become an ex- perimental reality after the suggestion that Landau levels can form associated to strain in graphene and the subsequent experimental confirmation. Here we propose a device to detect microstresses in graphene based on a scanning-tunneling-microscopy setup able to measure Aharonov-Bohm inter- ferences at the nanometer scale. The interferences to be observed in the local density of states are created by the fictitious magnetic field associated to elastic deformations of the sample.Comment: Some bugs fixe

    Large microwave generation from d.c. driven magnetic vortex oscillators in magnetic tunnel junctions

    Full text link
    Spin polarized current can excite the magnetization of a ferromagnet through the transfer of spin angular momentum to the local spin system. This pure spin-related transport phenomena leads to alluring possibilities for the achievement of a nanometer scale, CMOS compatible and tunable microwave generator operating at low bias for future wireless communications. Microwave emission generated by the persitent motion of magnetic vortices induced by spin transfer effect seems to be a unique manner to reach appropriate spectral linewidth. However, in metallic systems, where such vortex oscillations have been observed, the resulting microwave power is much too small. Here we present experimental evidences of spin-transfer induced core vortex precessions in MgO-based magnetic tunnel junctions with similar good spectral quality but an emitted power at least one order of magnitude stronger. More importantly, unlike to others spin transfer excitations, the thorough comparison between experimental results and models provide a clear textbook illustration of the mechanisms of vortex precessions induced by spin transfer
    corecore