11 research outputs found

    Dynein and Dynactin Leverage Their Bivalent Character to Form a High-Affinity Interaction

    Get PDF
    Amanda E. Siglin is with Thomas Jefferson University, Shangjin Sun is with University of Delaware, Jeffrey K. Moore is with Washington University in Saint Louis, Sarah Tan is with UT Austin, Martin Poenie is with UT Austin, James D. Lear is with University of Pennsylvania, Tatyana Polenova is with University of Delaware, John A. Cooper is with Washington University in Saint Louis, and John C. Williams is with Thomas Jefferson University and Beckman Research Institute at City of Hope.Cytoplasmic dynein and dynactin participate in retrograde transport of organelles, checkpoint signaling and cell division. The principal subunits that mediate this interaction are the dynein intermediate chain (IC) and the dynactin p150Glued; however, the interface and mechanism that regulates this interaction remains poorly defined. Herein, we use multiple methods to show the N-terminus of mammalian dynein IC, residues 10–44, is sufficient for binding p150Glued. Consistent with this mapping, monoclonal antibodies that antagonize the dynein-dynactin interaction also bind to this region of the IC. Furthermore, double and triple alanine point mutations spanning residues 6 to 19 in the yeast IC homolog, Pac11, produce significant defects in spindle positioning. Using the same methods we show residues 381 to 530 of p150Glued form a minimal fragment that binds to the dynein IC. Sedimentation equilibrium experiments indicate that these individual fragments are predominantly monomeric, but admixtures of the IC and p150Glued fragments produce a 2:2 complex. This tetrameric complex is sensitive to salt, temperature and pH, suggesting that the binding is dominated by electrostatic interactions. Finally, circular dichroism (CD) experiments indicate that the N-terminus of the IC is disordered and becomes ordered upon binding p150Glued. Taken together, the data indicate that the dynein-dynactin interaction proceeds through a disorder-to-order transition, leveraging its bivalent-bivalent character to form a high affinity, but readily reversible interaction.This work was supported in part by National Institutes of Health R21NS071166 (J.C.W.), R01GM085306 (J.C.W. & T.P.), NCRR SRR022316A (J.C.W.), GM 47337 (J.A.C.), NCRR 5P20RR017716-07 (T.P.), 5-T32-DK07705 (A.E.S) and The American Heart Association 0715196U (A.E.S). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Cellular and Molecular Biolog

    Chemoprotection Against Cancer by Isothiocyanates: A Focus on the Animal Models and the Protective Mechanisms

    No full text

    The Parathyroids

    No full text
    corecore