65 research outputs found

    No imminent quantum supremacy by boson sampling

    Get PDF
    It is predicted that quantum computers will dramatically outperform their conventional counterparts. However, large-scale universal quantum computers are yet to be built. Boson sampling is a rudimentary quantum algorithm tailored to the platform of photons in linear optics, which has sparked interest as a rapid way to demonstrate this quantum supremacy. Photon statistics are governed by intractable matrix functions known as permanents, which suggests that sampling from the distribution obtained by injecting photons into a linear-optical network could be solved more quickly by a photonic experiment than by a classical computer. The contrast between the apparently awesome challenge faced by any classical sampling algorithm and the apparently near-term experimental resources required for a large boson sampling experiment has raised expectations that quantum supremacy by boson sampling is on the horizon. Here we present classical boson sampling algorithms and theoretical analyses of prospects for scaling boson sampling experiments, showing that near-term quantum supremacy via boson sampling is unlikely. While the largest boson sampling experiments reported so far are with 5 photons, our classical algorithm, based on Metropolised independence sampling (MIS), allowed the boson sampling problem to be solved for 30 photons with standard computing hardware. We argue that the impact of experimental photon losses means that demonstrating quantum supremacy by boson sampling would require a step change in technology.Comment: 25 pages, 9 figures. Comments welcom

    Peroxisome proliferators-activated alpha agonist treatment ameliorates hepatic damage in rats with obstructive jaundice: an experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferators-activated receptor alpha (PPARα) activation modulates cholesterol metabolism and suppresses bile acid synthesis. This study aims to evaluate the effect of short-term administration of fenofibrate, a PPARα agonist, on proinflammatory cytokines, apoptosis, and hepatocellular damage in cholestasis.</p> <p>Methods</p> <p>Forty male Wistar rats were randomly divided into four groups: I = sham operated, II = bile duct ligation (BDL), III = BDL + vehicle (gum Arabic), IV = BDL + fenofibrate (100 mg/kg/day). All rats were sacrificed on 7<sup>th </sup>day after obtaining blood samples and liver tissue. Total bilirubin, aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), gamma-glutamyl transferase, (GGT), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1 β), and total bile acid (TBA) in serum, and liver damage scores; portal inflammation, necrosis, bile duct number, in liver tissue were evaluated. Apoptosis in liver was also assessed by immunohistochemical staining.</p> <p>Results</p> <p>Fenofibrate administration significantly reduced serum total bilirubin, AST, ALT, ALP, and GGT, TNF-α, IL-1 β levels, and TBA (<it>P </it>< 0.01). Hepatic portal inflammation, hepatic necrosis, number of the bile ducts and apoptosis in rats with BDL were more prominent than the sham-operated animals (<it>P </it>< 0.01). PPARα induction improved all histopathologic parameters (<it>P </it>< 0.01), except for the number of the bile duct, which was markedly increased by fenofibrate therapy (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Short-term administration of fenofibrate to the BDL rats exerts beneficial effects on hepatocellular damage and apoptosis.</p

    Cancer mortality in a cohort of asbestos textile workers

    Get PDF
    A cohort of 889 men and 1077 women employed for at least 1 month between 1946 and 1984 by a former Italian leading asbestos (mainly textile) company, characterised by extremely heavy exposures often for short durations, was followed up to 1996, for a total of 53 024 person-years of observation. Employment data were obtained from factory personnel records, while vital status and causes of death were ascertained through municipality registers and local health units. We observed 222 cancer deaths compared with 116.4 expected (standardized mortality ratio, SMR=191). The highest ratios were found for pleural (SMR=4105), peritoneal (SMR=1817) and lung (SMR=282) cancers. We observed direct relationships with duration of employment for lung and peritoneal cancer, and with time since first employment for lung cancer and mesothelioma. Pleural cancer risk was independent from duration (SMR=3428 for employment <1 year, 7659 for 1–4 years, 2979 for 5–9 years and 2130 for ⩾10 years). Corresponding SMRs for lung cancer were 139, 251, 233 and 531. Nonsignificantly increased ratios were found for ovarian (SMR=261), laryngeal (SMR=238) and oro-pharyngeal (SMR=226) cancers. This study confirms and further quantifies the central role of latency in pleural mesothelioma and of cumulative exposure in lung cancer

    Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle

    Get PDF
    Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45-) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1+CD45− stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1+ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1+CD45− cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7+ cells and facilitated formation of eMHC+DiI− fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy

    Tissue Type-Specific Expression of the dsRNA-Binding Protein 76 and Genome-Wide Elucidation of Its Target mRNAs

    Get PDF
    Background: RNA-binding proteins accompany all steps in the life of mRNAs and provide dynamic gene regulatory functions for rapid adjustment to changing extra-or intracellular conditions. The association of RNA-binding proteins with their targets is regulated through changing subcellular distribution, post-translational modification or association with other proteins. Methodology: We demonstrate that the dsRNA binding protein 76 (DRBP76), synonymous with nuclear factor 90, displays inherently distinct tissue type-specific subcellular distribution in the normal human central nervous system and in malignant brain tumors of glial origin. Altered subcellular localization and isoform distribution in malignant glioma indicate that tumor-specific changes in DRBP76-related gene products and their regulatory functions may contribute to the formation and/or maintenance of these tumors. To identify endogenous mRNA targets of DRBP76, we performed RNA-immunoprecipitation and genome-wide microarray analyses in HEK293 cells, and identified specific classes of transcripts encoding critical functions in cellular metabolism. Significance: Our data suggest that physiologic DRBP76 expression, isoform distribution and subcellular localization are profoundly altered upon malignant transformation. Thus, the functional role of DRBP76 in co- or post-transcriptional gene regulation may contribute to the neoplastic phenotype

    Charged and Hydrophobic Surfaces on the A Chain of Shiga-Like Toxin 1 Recognize the C-Terminal Domain of Ribosomal Stalk Proteins

    Get PDF
    Shiga-like toxins are ribosome-inactivating proteins (RIP) produced by pathogenic E. coli strains that are responsible for hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 chain of Shiga-like toxin 1 (SLT-1), a representative RIP, first docks onto a conserved peptide SD[D/E]DMGFGLFD located at the C-terminus of all three eukaryotic ribosomal stalk proteins and halts protein synthesis through the depurination of an adenine base in the sarcin-ricin loop of 28S rRNA. Here, we report that the A1 chain of SLT-1 rapidly binds to and dissociates from the C-terminal peptide with a monomeric dissociation constant of 13 µM. An alanine scan performed on the conserved peptide revealed that the SLT-1 A1 chain interacts with the anionic tripeptide DDD and the hydrophobic tetrapeptide motif FGLF within its sequence. Based on these 2 peptide motifs, SLT-1 A1 variants were generated that displayed decreased affinities for the stalk protein C-terminus and also correlated with reduced ribosome-inactivating activities in relation to the wild-type A1 chain. The toxin-peptide interaction and subsequent toxicity were shown to be mediated by cationic and hydrophobic docking surfaces on the SLT-1 catalytic domain. These docking surfaces are located on the opposite face of the catalytic cleft and suggest that the docking of the A1 chain to SDDDMGFGLFD may reorient its catalytic domain to face its RNA substrate. More importantly, both the delineated A1 chain ribosomal docking surfaces and the ribosomal peptide itself represent a target and a scaffold, respectively, for the design of generic inhibitors to block the action of RIPs

    Mucoidy, Quorum Sensing, Mismatch Repair and Antibiotic Resistance in Pseudomonas aeruginosa from Cystic Fibrosis Chronic Airways Infections

    Get PDF
    Survival of Pseudomonas aeruginosa in cystic fibrosis (CF) chronic infections is based on a genetic adaptation process consisting of mutations in specific genes, which can produce advantageous phenotypic switches and ensure its persistence in the lung. Among these, mutations inactivating the regulators MucA (alginate biosynthesis), LasR (quorum sensing) and MexZ (multidrug-efflux pump MexXY) are the most frequently observed, with those inactivating the DNA mismatch repair system (MRS) being also highly prevalent in P. aeruginosa CF isolates, leading to hypermutator phenotypes that could contribute to this adaptive mutagenesis by virtue of an increased mutation rate. Here, we characterized the mutations found in the mucA, lasR, mexZ and MRS genes in P. aeruginosa isolates obtained from Argentinean CF patients, and analyzed the potential association of mucA, lasR and mexZ mutagenesis with MRS-deficiency and antibiotic resistance. Thus, 38 isolates from 26 chronically infected CF patients were characterized for their phenotypic traits, PFGE genotypic patterns, mutations in the mucA, lasR, mexZ, mutS and mutL gene coding sequences and antibiotic resistance profiles. The most frequently mutated gene was mexZ (79%), followed by mucA (63%) and lasR (39%) as well as a high prevalence (42%) of hypermutators being observed due to loss-of-function mutations in mutL (60%) followed by mutS (40%). Interestingly, mutational spectra were particular to each gene, suggesting that several mechanisms are responsible for mutations during chronic infection. However, no link could be established between hypermutability and mutagenesis in mucA, lasR and mexZ, indicating that MRS-deficiency was not involved in the acquisition of these mutations. Finally, although inactivation of mucA, lasR and mexZ has been previously shown to confer resistance/tolerance to antibiotics, only mutations in MRS genes could be related to an antibiotic resistance increase. These results help to unravel the mutational dynamics that lead to the adaptation of P. aeruginosa to the CF lung

    Telomerase promoter mutations in cancer: an emerging molecular biomarker?

    Get PDF
    João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target
    corecore