416 research outputs found

    Ictal Behaviors During Nonepileptic Seizures Differ in Patients with Temporal Lobe Interictal Epileptiform EEG Activity and Patients Without Interictal Epileptiform EEG Abnormalities

    Full text link
    Purpose: Ictal behaviors during psychogenic non-epileptic seizures (NES) vary considerably among individuals, and can closely resemble common semiologies of epileptic seizures (ES). We tested the hypothesis that behaviors during NES in patients who have temporal spikes would more closely resemble behaviors during ES in patients with temporal lobe epilepsy than would behaviors during NES in patients who do not have EEG spikes. Methods: We identified 20 patients who had interictal temporal EEG spikes and EEG-video recorded NES (Study Group), 133 patients with temporal EEG spikes and recorded ES, without NES (Epileptic Group), and 24 patients with recorded NES and no epileptiform EEG abnormalities, without ES (Nonepileptic Group). Results: The hypothesis was supported with regard to ictal motor behaviors. Motionless staring or complex automatisms occurred mainly during NES in the Study Group and during ES in the Epileptic Group. In contrast, convulsive movements or flaccid falls were most common during NES in the Nonepileptic Group. Duration of unresponsiveness was longer, and there were fewer postictal states in NES both in the Study and Non-epileptic Groups. Unresponsiveness was briefer and postictal states were more consistent in ES in the Epileptic Group, however. Conclusions: Stereotyped motor activities during NES presumably represent learned behaviors. Processes underlying acquisition of ictal behaviors of NES probably differ in patients with interictal epileptiform EEG abnormalities compared to those without. Prior experiences and temporal lobe dysfunctions that are associated with epilepsy, and psychological characteristics that are unrelated to interictal epileptic dysfunctions, may determine ictal behaviors during NES.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65913/1/j.1528-1157.1998.tb01355.x.pd

    Microbiome variation in corals with distinct depth distribution ranges across a shallow-mesophotic gradient (15-85 m)

    Get PDF
    Mesophotic coral ecosystems (MCEs) are generally poorly studied, and our knowledge of lower MCEs (below 60 m depth) is largely limited to visual surveys. Here, we provide a first detailed assessment of the prokaryotic community associated with scleractinian corals over a depth gradient to the lower mesophotic realm (15-85 m). Specimens of three Caribbean coral species exhibiting differences in their depth distribution ranges (Agaricia grahamae, Madracis pharensis and Stephanocoenia intersepta) were collected with a manned submersible on the island of Cura double dagger ao, and their prokaryotic communities assessed using 16S rRNA gene sequencing analysis. Corals with narrower depth distribution ranges (depth-specialists) were associated with a stable prokaryotic community, whereas corals with a broader niche range (depth-generalists) revealed a higher variability in their prokaryotic community. The observed depth effects match previously described patterns in Symbiodinium depth zonation. This highlights the contribution of structured microbial communities over depth to the coral's ability to colonize a broader depth range.Austrian Science Fund (FWF); Catlin Group Limited; Global Change Institute; Eddie Bauer Grant for Expeditions by The Explorers Club; Marie Curie Fellowship [FP7-299320]; Lise Meitner Program of the Austrian Science Fund (FWF) [M1363-B20]info:eu-repo/semantics/publishedVersio

    Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply

    Get PDF
    © The Authors, 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Estuaries and Coasts 33 (2010): 15-29, doi:10.1007/s12237-009-9244-y.Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.This study was supported by the US Geological Survey’s Priority Ecosystems Science program, CALFED Bay/ Delta Program, and the University of California Center for Water Resources

    Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching

    Get PDF
    Our rapidly warming climate is threatening coral reefs as thermal anomalies trigger mass coral bleaching events. Deep (or "mesophotic") coral reefs are hypothesised to act as major ecological refuges from mass bleaching, but empirical assessments are limited. We evaluated the potential of mesophotic reefs within the Great Barrier Reef (GBR) and adjacent Coral Sea to act as thermal refuges by characterising long-term temperature conditions and assessing impacts during the 2016 mass bleaching event. We found that summer upwelling initially provided thermal relief at upper mesophotic depths (40 m), but then subsided resulting in anomalously warm temperatures even at depth. Bleaching impacts on the deep reefs were severe (40% bleached and 6% dead colonies at 40 m) but significantly lower than at shallower depths (60-69% bleached and 8-12% dead at 5-25 m). While we confirm that deep reefs can offer refuge from thermal stress, we highlight important caveats in terms of the transient nature of the protection and their limited ability to provide broad ecological refuge.XL Catlin Seaview Survey; Waitt Foundation; XL Catlin Group; Underwater Earth; University of Queensland; ARC Discovery Early Career Researcher Award (DECRA) [DE160101433]; Portuguese Science and Technology Foundation (FCT) [SFRH/BPD/110285/2015]; Australian Research Council (ARC

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Welcoming low testosterone as a cardiovascular risk factor

    Get PDF
    Male hypogonadism now has a new spectrum of complications. They are mainly cardiometabolic in nature. Low serum testosterone levels are a risk factor for diabetes, metabolic syndrome, inflammation and dyslipidemia. These metabolic and inflammatory complications are not without consequences. Recent studies have shown low serum testosterone levels to be an independent risk factor of cardiovascular and all-cause mortality. It is time to welcome low serum testosterone levels as a cardiovascular risk factor

    Central nervous system relapse in patients with breast cancer is associated with advanced stages, with the presence of circulating occult tumor cells and with the HER2/neu status

    Get PDF
    INTRODUCTION: To evaluate the incidence of central nervous system (CNS) involvement in patients with breast cancer treated with a taxane-based chemotherapy regimen and to determine predictive factors for CNS relapse. METHODS: The medical files of patients with early breast cancer (n = 253) or advanced stage breast cancer (n = 239) as well of those with other solid tumors (n = 336) treated with or without a taxane-based chemotherapy regimen during a 42-month period were reviewed. HER2/neu overexpression was identified by immunohistochemistry, whereas cytokeratin 19 (CK-19) mRNA-positive circulating tumor cells (CTCs) in the peripheral blood were identified by real-time PCR. RESULTS: The incidence of CNS relapse was similar in patients suffering from breast cancer or other solid tumors (10.4% and 11.4%, respectively; P = 0.517). The incidence of CNS relapse was significantly higher in breast cancer patients with advanced disease (P = 0.041), visceral disease and bone disease (P = 0.036), in those who were treated with a taxane-containing regimen (P = 0.024), in those with HER2/neu-overexpressing tumors (P = 0.022) and, finally, in those with detectable CK-19 mRNA-positive CTCs (P = 0.008). Multivariate analysis revealed that the stage of disease (odds ratio, 0.23; 95% confidence interval, 0.007–0.23; P = 0.0001), the HER2/neu status (odds ratio, 29.4; 95% confidence interval, 7.51–101.21; P = 0.0001) and the presence of CK-19 mRNA-positive CTCs (odds ratio, 8.31; 95% confidence interval, 3.97–12.84; P = 0.001) were independent predictive factors for CNS relapse. CONCLUSION: CNS relapses are common among breast cancer patients treated with a taxane-based chemotherapy regimen, patients with HER2/neu-positive tumor and patients with CK-19 mRNA-positive CTCs
    • …
    corecore