8,364 research outputs found
Structured Traversal of Search Trees in Constraint-logic Object-oriented Programming
In this paper, we propose an explicit, non-strict representation of search
trees in constraint-logic object-oriented programming. Our search tree
representation includes both the non-deterministic and deterministic behaviour
during execution of an application. Introducing such a representation
facilitates the use of various search strategies. In order to demonstrate the
applicability of our approach, we incorporate explicit search trees into the
virtual machine of the constraint-logic object-oriented programming language
Muli. We then exemplarily implement three search algorithms that traverse the
search tree on-demand: depth-first search, breadth-first search, and iterative
deepening depth-first search. In particular, the last two strategies allow for
a complete search, which is novel in constraint-logic object-oriented
programming and highlights our main contribution. Finally, we compare the
implemented strategies using several benchmarks.Comment: Part of DECLARE 19 proceeding
Automatic for the people
BACKGROUND: Neural systems must weight and integrate different sensory cues in order to make decisions. However, environmental conditions often change over time, altering the reliability of different cues and therefore the optimal way for combining them. To explore how cue integration develops in dynamic environments, we examined the effects on auditory spatial processing of rearing ferrets with localization cues that were modified via a unilateral earplug, interspersed with brief periods of normal hearing. RESULTS: In contrast with control animals, which rely primarily on timing and intensity differences between their two ears to localize sound sources, the juvenile-plugged ferrets developed the ability to localize sounds accurately by relying more on the unchanged spectral localization cues provided by the single normal ear. This adaptive process was paralleled by changes in neuronal responses in the primary auditory cortex, which became relatively more sensitive to these monaural spatial cues. Our behavioral and physiological data demonstrated, however, that the reweighting of different spatial cues disappeared as soon as normal hearing was experienced, showing for the first time that this type of plasticity can be context specific. CONCLUSIONS: These results show that developmental changes can be selectively expressed in response to specific acoustic conditions. In this way, the auditory system can develop and simultaneously maintain two distinct models of auditory space and switch between these models depending on the prevailing sensory context. This ability is likely to be critical for maintaining accurate perception in dynamic environments and may point toward novel therapeutic strategies for individuals who experience sensory deficits during development
Geochemistry and geobarometry of Eocene dykes intruding the Ladakh Batholith
We present further distinguishing characteristics among Eocene dykes found along the Southern margin of the Ladakh batholith (NW-India). Coupled evidence from field structures and Nd-Sr isotope data showed that there are two broad dyke provinces extending over 50 km: between Leh and Tunglung, an 'eastern', ENE-trending family with higher crustal assimilation; between Tunglung and Hemis Shugpachan, the ...postprin
pH-responsive nanocomposite fibres allowing MRI monitoring of drug release
Magnetic resonance imaging (MRI) is one of the most widely-used non-invasive clinical imaging tools, producing detailed anatomical images whilst avoiding side effects such as trauma or X-ray radiation exposure. In this article, a new approach to non-invasive monitoring of drug release from a drug delivery vehicle via MRI was developed, using pH-responsive Eudragit L100 and S100 fibres encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) and carmofur (a drug used in the treatment of colon cancer). Fibres were prepared by electrospinning, and found to be smooth and cylindrical with diameters of 645 ± 225 nm for L100 and 454 ± 133 nm for S100. The fibres exhibited pH responsive dissolution behaviour. Around the physiological pH range, clear pH-responsive proton relaxation rate changes due to matrix swelling/dissolution can be observed: r2 values of L100 fibres increase from 29.3 ± 8.3 to 69.8 ± 2.5 mM-1s-1 over 3 h immersion in a pH 7.4 medium, and from 13.5 ± 2.0 mM-1 s-1 to 42.1 ± 3.0 mM-1 s-1 at pH 6.5. The r2 values of S100 fibres grow from 30.4 ± 4.4 to 64.7 ± 1.0 mM-1 s-1 at pH 7.4, but at pH 6.5, where the S100 fibres are not soluble, r2 remains very low ( 0.94) between the two. Mathematical equations were developed to predict carmofur release in vitro, with very similar experimental and predicted release profiles obtained. Therefore, the formulations developed herein have the potential to be used for non-invasive monitoring of drug release in vivo, and could ultimately result in dramatic reductions to off-target side effects from interventions such as chemotherapy
Natural History of the Slave Making Ant, Polyergus lucidus, Sensu lato in Northern Florida and Its Three Formica pallidefulva Group Hosts
Slave making ants of the Polyergus lucidus Mayr (Hymenoptera: Formicidae) complex enslave 3 different Formica species, Formica archboldi, F. dolosa, and F. pallidefalva, in northern Florida. This is the first record of presumed P. lucidus subspecies co-occurring with and enslaving multiple Formica hosts in the southern end of their range. The behavior, colony sizes, body sizes, nest architecture, and other natural history observations of Polyergus colonies and their Formica hosts are reported. The taxonomic and conservation implications of these observations are discussed
Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics.
Protective humoral memory forms in secondary lymphoid organs where B cells undergo affinity maturation and differentiation into memory or plasma cells. Here, we provide a comprehensive roadmap of human B cell maturation with single-cell transcriptomics matched with bulk and single-cell antibody repertoires to define gene expression, antibody repertoires, and clonal sharing of B cell states at single-cell resolution, including memory B cell heterogeneity that reflects diverse functional and signaling states. We reconstruct gene expression dynamics during B cell activation to reveal a pre-germinal center state primed to undergo class switch recombination and dissect how antibody class-dependent gene expression in germinal center and memory B cells is linked with a distinct transcriptional wiring with potential to influence their fate and function. Our analyses reveal the dynamic cellular states that shape human B cell-mediated immunity and highlight how antibody isotype may play a role during their antibody-based selection.
This is the authorâs version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Immunology on Science Immunology Vol. 6, Feb 2021, DOI: 10.1126/sciimmunol.abe6291
Spontaneous Stratification in Granular Mixtures
Granular materials size segregate when exposed to external periodic
perturbations such as vibrations. Moreover, mixtures of grains of different
sizes spontaneously segregate in the absence of external perturbations: when a
mixture is simply poured onto a pile, the large grains are more likely to be
found near the base, while the small grains are more likely to be near the top.
Here, we report a spontaneous phenomenon arising when we pour a mixture between
two vertical plates: the mixture spontaneously stratifies into alternating
layers of small and large grains whenever the large grains are rougher than the
small grains. In contrast, we find only spontaneous segregation when the large
grains are more rounded than the small grains. The stratification is related to
the occurrence of avalanches; during each avalanche the grains comprising the
avalanche spontaneously stratify into a pair of layers through a "kink"
mechanism, with the small grains forming a sublayer underneath the layer of
large grains.Comment: 4 pages, 6 figures, http://polymer.bu.edu/~hmakse/Home.htm
Exploring precision polymers to fine-tune magnetic resonance imaging properties of iron oxide nanoparticles
The use of bio-polymers as stabilising agents for iron oxide-based negative magnetic resonance imaging (MRI) contrast agents has become popular in recent years, however the wide polydispersity of biologically-derived and commercially available polymers limits the ability to produce truly tuneable and reproducible behaviour, a major challenge in this area. In this work, stable colloids of iron oxide nanoparticles were prepared utilising precision-engineered bio-polymer mimics, poly(2-acrylamido-2-methylpropane sodium sulfonate) (P(AMPS)) polymers, with controlled narrow polydispersity molecular weights, as templating stabilisers. In addition to producing magnetic colloids with excellent MRI contrast capabilities (r2 values reaching 434.2 mMâ1 sâ1 at 25 °C and 23 MHz, several times higher than similar commercial analogues), variable field relaxometry provided unexpected important insights into the dynamic environment of the hydrated materials, and hence their exceptional MRI behaviour. Thanks to the polymerâs templating backbone and flexible conformation in aqueous suspension, nanocomposites appear to behave as âmulti-coreâ clustered species, enhancing interparticle interactions whilst retaining water diffusion, boosting relaxation properties at low frequency. This clustering behaviour, evidenced by small-angle X-ray scattering, and strong relaxometric response, was fine-tuned using the well-defined molecular weight polymer species with precise iron to polymer ratios. By also showing negligible haemolytic activity, these nanocomposites exhibit considerable potential for MRI diagnostics
Boundaries of Disk-like Self-affine Tiles
Let be a disk-like self-affine tile generated by an
integral expanding matrix and a consecutive collinear digit set , and let be the characteristic polynomial of . In the
paper, we identify the boundary with a sofic system by
constructing a neighbor graph and derive equivalent conditions for the pair
to be a number system. Moreover, by using the graph-directed
construction and a device of pseudo-norm , we find the generalized
Hausdorff dimension where
is the spectral radius of certain contact matrix . Especially,
when is a similarity, we obtain the standard Hausdorff dimension where is the largest positive zero of
the cubic polynomial , which is simpler than
the known result.Comment: 26 pages, 11 figure
Structural characterization and physical properties of P2O5-CaO-Na2O-TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies.
Phosphate-based glasses have been investigated for tissue engineering applications. This study details the properties and structural characterization of titanium ultra-phosphate glasses in the 55(P(2)O(5))-30(CaO)-(25-x)(Na(2)O)-x(TiO(2)) (0â€xâ€5) system, which have been prepared via melt-quenching techniques. Structural characterization was achieved by a combination of X-ray diffraction (XRD), and solid-state nuclear magnetic resonance, Raman and Fourier transform infrared spectroscopies. Physical properties were also investigated using density, degradation and ion release studies; additionally, differential thermal analysis was used for thermal analysis of these glasses. The results show that with the addition of TiO(2) the density and glass transition temperature increased whereas the degradation and ion release properties are decreased. From XRD data, TiP(2)O(7) and CaP(2)O(6) were detected in 3 and 5 mol.% TiO(2)-containing glasses. Magic angle spinning nuclear magnetic resonance results confirmed that as TiO(2) is incorporated into the glass; the amount of Q(3) increases as the amount of Q(2) consequently decreases, indicating increasing polymerization of the phosphate network. Spectroscopy results also showed that the local structure of glasses changes with increasing TiO(2) content. As TiO(2) is incorporated into the glass, the phosphate connectivity increases, indicating that the addition of TiO(2) content correlates unequivocally with an increase in glass stability
- âŠ