32 research outputs found
Differential Stress-Induced Neuronal Activation Patterns in Mouse Lines Selectively Bred for High, Normal or Low Anxiety
There is evidence for a disturbed perception and processing of emotional information in pathological anxiety. Using a rat model of trait anxiety generated by selective breeding, we previously revealed differences in challenge-induced neuronal activation in fear/anxiety-related brain areas between high (HAB) and low (LAB) anxiety rats. To confirm whether findings generalize to other species, we used the corresponding HAB/LAB mouse model and investigated c-Fos responses to elevated open arm exposure. Moreover, for the first time we included normal anxiety mice (NAB) for comparison. The results confirm that HAB mice show hyperanxious behavior compared to their LAB counterparts, with NAB mice displaying an intermediate anxiety phenotype. Open arm challenge revealed altered c-Fos response in prefrontal-cortical, limbic and hypothalamic areas in HAB mice as compared to LAB mice, and this was similar to the differences observed previously in the HAB/LAB rat lines. In mice, however, additional differential c-Fos response was observed in subregions of the amygdala, hypothalamus, nucleus accumbens, midbrain and pons. Most of these differences were also seen between HAB and NAB mice, indicating that it is predominately the HAB line showing altered neuronal processing. Hypothalamic hypoactivation detected in LAB versus NAB mice may be associated with their low-anxiety/high-novelty-seeking phenotype. The detection of similarly disturbed activation patterns in a key set of anxiety-related brain areas in two independent models reflecting psychopathological states of trait anxiety confirms the notion that the altered brain activation in HAB animals is indeed characteristic of enhanced (pathological) anxiety, providing information for potential targets of therapeutic intervention
Evolutionary diversity and developmental regulation of X-chromosome inactivation
X-chromosome inactivation (XCI) results in the transcriptional silencing of one X-chromosome in females to attain gene dosage parity between XX female and XY male mammals. Mammals appear to have developed rather diverse strategies to initiate XCI in early development. In placental mammals XCI depends on the regulatory noncoding RNA X-inactive specific transcript (Xist), which is absent in marsupials and monotremes. Surprisingly, even placental mammals show differences in the initiation of XCI in terms of Xist regulation and the timing to acquire dosage compensation. Despite this, all placental mammals achieve chromosome-wide gene silencing at some point in development, and this is maintained by epigenetic marks such as chromatin modifications and DNA methylation. In this review, we will summarise recent findings concerning the events that occur downstream of Xist RNA coating of the inactive X-chromosome (Xi) to ensure its heterochromatinization and the maintenance of the inactive state in the mouse and highlight similarities and differences between mammals
Analysis of the effects of sex hormone background on the rat choroid plexus transcriptome by cDNA microarrays
The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several neurodegenerative diseases, and the presence of sex hormones cognate receptors suggest that it may be a target for these hormones. In an effort to provide further insight into the neuroprotective mechanisms triggered by sex hormones we analyzed gene expression differences in the CP of female and male rats subjected to gonadectomy, using microarray technology. In gonadectomized female and male animals, 3045 genes were differentially expressed by 1.5-fold change, compared to sham controls. Analysis of the CP transcriptome showed that the top-five pathways significantly regulated by the sex hormone background are olfactory transduction, taste transduction, metabolism, steroid hormone biosynthesis and circadian rhythm pathways. These results represent the first overview of global expression changes in CP of female and male rats induced by gonadectomy and suggest that sex hormones are implicated in pathways with central roles in CP functions and CSF homeostasis
Minimising losses to predation during microalgae cultivation
We explore approaches to minimise impacts of zooplanktonic pests upon commercial microalgal crops using system dynamics models to describe algal growth controlled by light and nutrient availability and zooplankton growth controlled by crop abundance and nutritional quality. Losses of microalgal crops are minimised when their growth is fastest and, in contrast, also when growing slowly under conditions of nutrient exhaustion. In many culture systems, however, dwindling light availability due to self-shading in dense suspensions favours slow growth under nutrient sufficiency. Such a situation improves microalgal quality as prey, enhancing zooplankton growth, and leads to rapid crop collapse. Timing of pest entry is important; crop losses are least likely in established, nutrient-exhausted microalgal communities grown for high C-content (e.g. for biofuels). A potentially useful approach is to promote a low level of P-stress that does not adversely affect microalgal growth but which produces a crop that is suboptimal for zooplankton growth
Synthesis of mixed opioid affinity cyclic endomorphin-2 analogues with fluorinated phenylalanines
As part of our continuing studies on the structure-activity relationships of cyclic pentapeptides based on the structure of endomorphin-2 (EM-2), we report here the synthesis and biological activities of a new series of analogues of a general sequence Tyr/Dmt-c[d-Lys-Phe-Phe-Asp]NH2 (where Dmt = 2',6'-dimethyltyrosine), incorporating fluorinated amino acids: 4-fluorophenylalanine (4-F-Phe), 2,4-difluorophenylalanine (2,4-F-Phe), or 4-trifluoromethylphenylalanine (4-CF3-Phe) instead of the Phe residue in position 3 or 4. Depending on the fluorinated amino acid residue and its position in the sequence, analogues were mixed, high affinity MOP/KOP receptor agonists, MOP/DOP/KOP agonists, or selective KOP agonists. The in vitro potencies and efficacies of all novel analogues were assessed in calcium mobilization assay. The most potent analogues, Dmt-c[d-Lys-Phe-4-F-Phe-Asp]NH2 and Dmt-c[d-Lys-Phe-2,4-F-Phe-Asp]NH2, were tested in vivo in the mouse hot-plate test. They produced strong antinociceptive effect not only after intracerebroventricular but also after intraperitoneal injection, indicating that they were able to cross the blood-brain barrier