117 research outputs found

    An entropy test for single-locus genetic association analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The etiology of complex diseases is due to the combination of genetic and environmental factors, usually many of them, and each with a small effect. The identification of these small-effect contributing factors is still a demanding task. Clearly, there is a need for more powerful tests of genetic association, and especially for the identification of rare effects</p> <p>Results</p> <p>We introduce a new genetic association test based on symbolic dynamics and symbolic entropy. Using a freely available software, we have applied this entropy test, and a conventional test, to simulated and real datasets, to illustrate the method and estimate type I error and power. We have also compared this new entropy test to the Fisher exact test for assessment of association with low-frequency SNPs. The entropy test is generally more powerful than the conventional test, and can be significantly more powerful when the genotypic test is applied to low allele-frequency markers. We have also shown that both the Fisher and Entropy methods are optimal to test for association with low-frequency SNPs (MAF around 1-5%), and both are conservative for very rare SNPs (MAF<1%)</p> <p>Conclusions</p> <p>We have developed a new, simple, consistent and powerful test to detect genetic association of biallelic/SNP markers in case-control data, by using symbolic dynamics and symbolic entropy as a measure of gene dependence. We also provide a standard asymptotic distribution of this test statistic. Given that the test is based on entropy measures, it avoids smoothed nonparametric estimation. The entropy test is generally as good or even more powerful than the conventional and Fisher tests. Furthermore, the entropy test is more computationally efficient than the Fisher's Exact test, especially for large number of markers. Therefore, this entropy-based test has the advantage of being optimal for most SNPs, regardless of their allele frequency (Minor Allele Frequency (MAF) between 1-50%). This property is quite beneficial, since many researchers tend to discard low allele-frequency SNPs from their analysis. Now they can apply the same statistical test of association to all SNPs in a single analysis., which can be especially helpful to detect rare effects.</p

    The yield of essential oils in Melaleuca alternifolia (Myrtaceae) is regulated through transcript abundance of genes in the MEP pathway

    Get PDF
    Medicinal tea tree (Melaleuca alternifolia) leaves contain large amounts of an essential oil, dominated by monoterpenes. Several enzymes of the chloroplastic methylerythritol phosphate (MEP) pathway are hypothesised to act as bottlenecks to the production of monoterpenes. We investigated, whether transcript abundance of genes encoding for enzymes of the MEP pathway were correlated with foliar terpenes in M. alternifolia using a population of 48 individuals that ranged in their oil concentration from 39 -122 mg x g DM(-1). Our study shows that most genes in the MEP pathway are co-regulated and that the expression of multiple genes within the MEP pathway is correlated with oil yield. Using multiple regression analysis, variation in expression of MEP pathway genes explained 87% of variation in foliar monoterpene concentrations. The data also suggest that sesquiterpenes in M. alternifolia are synthesised, at least in part, from isopentenyl pyrophosphate originating from the plastid via the MEP pathway

    Estrus cyclicity of spinogenesis: underlying mechanisms

    Get PDF
    Hippocampal spine density varies with the estrus cycle. The cyclic change in estradiol levels in serum was hypothesized to underlie this phenomenon, since treatment of ovariectomized animals with estradiol induced an increase in spine density in hippocampal dendrites of rats, as compared to ovariectomized controls. In contrast, application of estradiol to hippocampal slice cultures did not promote spinogenesis. In addressing this discrepancy, we found that hippocampal neurons themselves are capable of synthesizing estradiol de novo. Estradiol synthesis can be suppressed by aromatase inhibitors and by knock-down of Steroid Acute Regulatory Protein (StAR) and enhanced by substrates of steroidogenesis. Expression of estrogen receptors (ERs) and synaptic proteins, synaptogenesis, and long-term potentiation (LTP) correlated positively with aromatase activity in hippocampal cultures without any difference between genders. All effects due to inhibition of aromatase activity were rescued by application of estradiol to the cultures. Most importantly, gonadotropin-releasing hormone (GnRH) increased estradiol synthesis dose-dependently via an aromatase-mediated mechanism and consistently increased spine synapse density and spinophilin expression. As a consequence, our data suggest that cyclic fluctuations in spine synapse density result from pulsative release of GnRH from the hypothalamus and its effect on hippocampal estradiol synthesis, rather than from varying levels of serum estradiol. This hypothesis is further supported by higher GnRH receptor (GnRH-R) density in the hippocampus than in the cortex and hypothalamus and the specificity of estrus cyclicity of spinogenesis in the hippocampus, as compared to the cortex

    Reductions in External Divalent Cations Evoke Novel Voltage-Gated Currents in Sensory Neurons

    Get PDF
    It has long been recognized that divalent cations modulate cell excitability. Sensory nerve excitability is of critical importance to peripheral diseases associated with pain, sensory dysfunction and evoked reflexes. Thus we have studied the role these cations play on dissociated sensory nerve activity. Withdrawal of both Mg2+ and Ca2+ from external solutions activates over 90% of dissociated mouse sensory neurons. Imaging studies demonstrate a Na+ influx that then causes depolarization-mediated activation of voltage-gated Ca2+ channels (CaV), which allows Ca2+ influx upon divalent re-introduction. Inhibition of CaV (ω-conotoxin, nifedipine) or NaV (tetrodotoxin, lidocaine) fails to reduce the Na+ influx. The Ca2+ influx is inhibited by CaV inhibitors but not by TRPM7 inhibition (spermine) or store-operated channel inhibition (SKF96365). Withdrawal of either Mg2+ or Ca2+ alone fails to evoke cation influxes in vagal sensory neurons. In electrophysiological studies of dissociated mouse vagal sensory neurons, withdrawal of both Mg2+ and Ca2+ from external solutions evokes a large slowly-inactivating voltage-gated current (IDF) that cannot be accounted for by an increased negative surface potential. Withdrawal of Ca2+ alone fails to evoke IDF. Evidence suggests IDF is a non-selective cation current. The IDF is not reduced by inhibition of NaV (lidocaine, riluzole), CaV (cilnidipine, nifedipine), KV (tetraethylammonium, 4-aminopyridine) or TRPM7 channels (spermine). In summary, sensory neurons express a novel voltage-gated cation channel that is inhibited by external Ca2+ (IC50∼0.5 µM) or Mg2+ (IC50∼3 µM). Activation of this putative channel evokes substantial cation fluxes in sensory neurons
    corecore