63 research outputs found

    Abstract Argumentation / Persuasion / Dynamics

    Full text link
    The act of persuasion, a key component in rhetoric argumentation, may be viewed as a dynamics modifier. We extend Dung's frameworks with acts of persuasion among agents, and consider interactions among attack, persuasion and defence that have been largely unheeded so far. We characterise basic notions of admissibilities in this framework, and show a way of enriching them through, effectively, CTL (computation tree logic) encoding, which also permits importation of the theoretical results known to the logic into our argumentation frameworks. Our aim is to complement the growing interest in coordination of static and dynamic argumentation.Comment: Arisaka R., Satoh K. (2018) Abstract Argumentation / Persuasion / Dynamics. In: Miller T., Oren N., Sakurai Y., Noda I., Savarimuthu B., Cao Son T. (eds) PRIMA 2018: Principles and Practice of Multi-Agent Systems. PRIMA 2018. Lecture Notes in Computer Science, vol 11224. Springer, Cha

    Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    Get PDF
    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions

    ST2 and IL-33 in Pregnancy and Pre-Eclampsia

    Get PDF
    Normal pregnancy is associated with a mild systemic inflammatory response and an immune bias towards type 2 cytokine production, whereas pre-eclampsia is characterized by a more intense inflammatory response, associated with endothelial dysfunction and a type 1 cytokine dominance. Interleukin (IL)-33 is a newly described member of the IL-1 family, which binds its receptor ST2L to induce type 2 cytokines. A soluble variant of ST2 (sST2) acts as a decoy receptor to regulate the activity of IL-33. In this study circulating IL-33 and sST2 were measured in each trimester of normal pregnancy and in women with pre-eclampsia. While IL-33 did not change throughout normal pregnancy, or between non-pregnant, normal pregnant or pre-eclamptic women, sST2 was significantly altered. sST2 was increased in the third trimester of normal pregnancy (p<0.001) and was further increased in pre-eclampsia (p<0.001). This increase was seen prior to the onset of disease (p<0.01). Pre-eclampsia is a disease caused by placental derived factors, and we show that IL-33 and ST2 can be detected in lysates from both normal and pre-eclampsia placentas. ST2, but not IL-33, was identified on the syncytiotrophoblast layer, whereas IL-33 was expressed on perivascular tissue. In an in vitro placental perfusion model, sST2 was secreted by the placenta into the ‘maternal’ eluate, and placental explants treated with pro-inflammatory cytokines or subjected to hypoxia/reperfusion injury release more sST2, suggesting the origin of at least some of the increased amounts of circulating sST2 in pre-eclamptic women is the placenta. These results suggest that sST2 may play a significant role in pregnancies complicated by pre-eclampsia and increased sST2 could contribute to the type 1 bias seen in this disorder

    The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm

    Get PDF

    RNA Nanotechnology

    Get PDF
    Cite this entry as: Yaradoddi J.S. et al. (2019) RNA Nanotechnology. In: Martínez L., Kharissova O., Kharisov B. (eds) Handbook of Ecomaterials. Springer, Cham Publisher Name: Springer, Cham DOI: https://doi.org/10.1007/978-3-319-68255-6_193 Print ISBN: 978-3-319-68254-9 Online ISBN: 978-3-319-68255-6 First Online: 14 February 2019DNA, RNA, and proteins are seemed to be immensely substantial tools for nanobiotechnological applications; this is since their exceptional biochemical properties and role. Particularly RNA is categorized over comparatively high-temperature stability, varied organizational pliability, and their performance in natural circumstances. Above properties made, RNA, a valued constituent for bionanotechnology processes and usefulness, especially RNA nanotechnology, could synthesize complex molecules using simple molecules through de nova nanostructures having exceptional utility by the strategy, integration, and manipulations of most predominant processes which are usually based on different RNA structures and because of their vital biochemical properties. The current chapter emphasis on the basic principles inspires the normal design of RNA nanostructures, pronounces the important methods that are used in constructing nanoparticles’ self-assemblages, and further describes the associated challenges and excelled opportunities of RNA nanotechnology in near future.Peer reviewe
    • 

    corecore