27 research outputs found

    Seed Mucilage Improves Seedling Emergence of a Sand Desert Shrub

    Get PDF
    The success of seedling establishment of desert plants is determined by seedling emergence response to an unpredictable precipitation regime. Sand burial is a crucial and frequent environmental stress that impacts seedling establishment on sand dunes. However, little is known about the ecological role of seed mucilage in seedling emergence in arid sandy environments. We hypothesized that seed mucilage enhances seedling emergence in a low precipitation regime and under conditions of sand burial. In a greenhouse experiment, two types of Artemisia sphaerocephala achenes (intact and demucilaged) were exposed to different combinations of burial depth (0, 5, 10, 20, 40 and 60 mm) and irrigation regimes (low, medium and high, which simulated the precipitation amount and frequency in May, June and July in the natural habitat, respectively). Seedling emergence increased with increasing irrigation. It was highest at 5 mm sand burial depth and ceased at burial depths greater than 20 mm in all irrigation regimes. Mucilage significantly enhanced seedling emergence at 0, 5 and 10 mm burial depths in low irrigation, at 0 and 5 mm burial depths in medium irrigation and at 0 and 10 mm burial depths in high irrigation. Seed mucilage also reduced seedling mortality at the shallow sand burial depths. Moreover, mucilage significantly affected seedling emergence time and quiescence and dormancy percentages. Our findings suggest that seed mucilage plays an ecologically important role in successful seedling establishment of A. sphaerocephala by improving seedling emergence and reducing seedling mortality in stressful habitats of the sandy desert environment

    Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts

    Get PDF
    Primary production in deserts is limited by soil moisture and N availability, and thus is likely to be influenced by both anthropogenic N deposition and precipitation regimes altered as a consequence of climate change. Invasive annual grasses are particularly responsive to increases in N and water availabilities, which may result in competition with native forb communities. Additionally, conditions favoring increased invasive grass production in arid and semi-arid regions can increase fire risk, negatively impacting woody vegetation that is not adapted to fire. We conducted a seeded garden experiment and a 5-year field fertilization experiment to investigate how winter annual production is altered by increasing N supply under a range of water availabilities. The greatest production of invasive grasses and native forbs in the garden experiment occurred under the highest soil N (inorganic N after fertilization = 2.99 g m−2) and highest watering regime, indicating these species are limited by both water and N. A classification and regression tree (CART) analysis on the multi-year field fertilization study showed that winter annual biomass was primarily limited by November–December precipitation. Biomass exceeded the threshold capable of carrying fire when inorganic soil N availability was at least 3.2 g m−2 in piñon-juniper woodland. Due to water limitation in creosote bush scrub, biomass exceeded the fire threshold only under very wet conditions regardless of soil N status. The CART analyses also revealed that percent cover of invasive grasses and native forbs is primarily dependent on the timing and amount of precipitation and secondarily dependent on soil N and site-specific characteristics. In total, our results indicate that areas of high N deposition will be susceptible to grass invasion, particularly in wet years, potentially reducing native species cover and increasing the risk of fire

    Photosynthetic responses of Larrea tridentata to seasonal temperature extremes under elevated CO2

    Full text link
    Elevated CO2 potentially decreases the effects of temperature stress on photosynthesis. Under both freezing and high temperatures previous studies have shown that elevated CO2 can particularly enhance photosynthetic rates, although results from freezing studies are more variable. Here we show gas exchange responses of Larrea tridentata to elevated CO2 over a 6-yr period when temperature stress events may have had a significant effect on photosynthesis in the field. Nighttime freezing air temperatures decreased subsequent daytime photosynthetic rates, stomatal conductance, and the maximum yield of PSII similarly under ambient and elevated CO2. Further, we found no statistically significant relationship between leaf temperature and photosynthetic enhancement. Overall, the degree of photosynthetic enhancement under elevated CO2 was directly proportional to the response of stomatal conductance to CO2. Thus, elevated CO2 does not significantly affect apparent physiological responses of Larrea to temperature extremes. However, because of the tight relationship between stomatal conductance and photosynthetic enhancement, potential climate change effects on stomatal conductance will significantly influence Larrea performance in the future

    Environmental Dimension into Strategic Planning. The Case of Metropolitan City of Cagliari

    No full text
    Global changes in the Anthropocene are unprecedented in history. They are closely linked to the use of the soil, the sea and the exploitation of natural resources and in turn determine important changes in the values and socio-cultural behavior of entire populations. In this context, the focus on the environmental dimension is the main way to govern the city and territory. In this sense, the environmental assets through the criterion of participation in decision-making processes, the identification and assessment of reasonable plan/program alternatives through the construction of forecast scenarios related to the evolution of the state of the environment constitutes the spatial planning paradigm, from the municipal level implementation strategy and the metropolitan level strategic one. Although in fact all Italian metropolitan cities are oriented towards adopting strategic and sustainable development models, capable of fighting the consumption of soil and natural resources in general, these have not always correspondence in an approach that specific environmental assessments part of the plan process and therefore functional for future governance choices. In this context, the objective of this work is to describe the case of the metropolitan city of Cagliari highlighting how the environmental dynamic and assets should be considered into its (actually in defining phase) strategic plan
    corecore