27 research outputs found

    Estimating uncertainty in ecosystem budget calculations

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial License. The definitive version was published in Ecosystems 13 (2010): 239-248, doi:10.1007/s10021-010-9315-8.Ecosystem nutrient budgets often report values for pools and fluxes without any indication of uncertainty, which makes it difficult to evaluate the significance of findings or make comparisons across systems. We present an example, implemented in Excel, of a Monte Carlo approach to estimating error in calculating the N content of vegetation at the Hubbard Brook Experimental Forest in New Hampshire. The total N content of trees was estimated at 847 kg ha−1 with an uncertainty of 8%, expressed as the standard deviation divided by the mean (the coefficient of variation). The individual sources of uncertainty were as follows: uncertainty in allometric equations (5%), uncertainty in tissue N concentrations (3%), uncertainty due to plot variability (6%, based on a sample of 15 plots of 0.05 ha), and uncertainty due to tree diameter measurement error (0.02%). In addition to allowing estimation of uncertainty in budget estimates, this approach can be used to assess which measurements should be improved to reduce uncertainty in the calculated values. This exercise was possible because the uncertainty in the parameters and equations that we used was made available by previous researchers. It is important to provide the error statistics with regression results if they are to be used in later calculations; archiving the data makes resampling analyses possible for future researchers. When conducted using a Monte Carlo framework, the analysis of uncertainty in complex calculations does not have to be difficult and should be standard practice when constructing ecosystem budgets

    Common challenges for ecological modelling: synthesis of facilitated discussions held at the symposia organized for the 2009 conference of the International Society for Ecological Modelling in Quebec City, Canada, (October 6–9, 2009)

    No full text
    The eleven symposia organized for the 2009 conference of the International Society for Ecological Modelling (ISEM 2009) held in Quebec City, Canada, October 6-9, 2009, included facilitated discussion sessions following formal presentations. Each symposium focused on a specific subject, and all the subjects could be classified into three broad categories: theoretical development, population dynamics and ecosystem processes. Following discussions with the symposia organizers, which indicated that they all shared similar issues and concerns, the facilitated discussions were task-oriented around four basic questions: (1) key challenges in the research area, (2) generating and sharing new ideas, (3) improving collaboration and networking, and (4) increasing visibility to decision-makers, partners and clients. Common challenges that emerged from the symposia included the need for improved communication and collaboration among different academic disciplines, further progress in both theoretical and practical modelling approaches, and accentuation of technology transfer. Regarding the generation and sharing of new ideas, the main issue that emerged was the type of positive interactions that should be encouraged among potential collaborators. The usefulness of the Internet, particularly for the sharing of open-source software and conducting discussion forums, was highlighted for improving collaboration and networking. Several communication tools are available today, and it is important for modellers to use them more intensively. Visibility can be increased by publishing professional newsletters, maintaining informal contacts with the public, organizing educational sessions in primary and secondary schools, and developing simplified analytical frameworks and pilot studies. Specific issues raised in each symposium are also discussed. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000293038700024&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701EcologySCI(E)CPCI-S(ISTP)

    Uncertainty Challenge in Geospatial Analysis: An Approximation from the Land Use Cover Change Modelling Perspective

    No full text
    All data and geospatial analyses come with uncertainty. Although its importance has been widely recognized, uncertainty issues are still not correctly addressed in most of the current geospatial research. This chapter aims to provide an overview of the concepts, sources and tools to manage the uncertainty in geospatial analysis. To this end, we intend to increase the awareness about the importance of uncertainty for all geospatial data and analyses. Due to time and chapter length considerations, we address this topic from the Land Use Cover Change Modelling perspective.Agencia Estatal de InvestigaciónDepto. de GeografíaFac. de Geografía e HistoriaTRUEpu
    corecore