30 research outputs found
Aggressive dominance can decrease behavioral complexity on subordinates through synchronization of locomotor activities
Social environments are known to influence behavior. Moreover, within small social groups, dominant/subordinate relationships frequently emerge. Dominants can display aggressive behaviors towards subordinates and sustain priority access to resources. Herein, Japanese quail (Coturnix japonica) were used, given that they establish hierarchies through frequent aggressive interactions. We apply a combination of different mathematical tools to provide a precise quantification of the effect of social environments and the consequence of dominance at an individual level on the temporal dynamics of behavior. Main results show that subordinates performed locomotion dynamics with stronger long-range positive correlations in comparison to birds that receive few or no aggressions from conspecifics (more random dynamics). Dominant birds and their subordinates also showed a high level of synchronization in the locomotor pattern, likely emerging from the lack of environmental opportunities to engage in independent behavior. Findings suggest that dominance can potentially modulate behavioral dynamics through synchronization of locomotor activities.publishedVersionAlcala, Rocio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Caliva, Jorge Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Caliva, Jorge Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Flesia, Ana Georgina. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Flesia, Ana Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Marin, Raúl Hector. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Marin, Raúl Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Kembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism
Genome-scale metabolic models (GEMs) represent extensive knowledgebases that provide a platform for model simulations and integrative analysis of omics data. This study introduces Yeast8 and an associated ecosystem of models that represent a comprehensive computational resource for performing simulations of the metabolism of Saccharomyces cerevisiae––an important model organism and widely used cell-factory. Yeast8 tracks community development with version control, setting a standard for how GEMs can be continuously updated in a simple and reproducible way. We use Yeast8 to develop the derived models panYeast8 and coreYeast8, which in turn enable the reconstruction of GEMs for 1,011 different yeast strains. Through integration with enzyme constraints (ecYeast8) and protein 3D structures (proYeast8DB), Yeast8 further facilitates the exploration of yeast metabolism at a multi-scale level, enabling prediction of how single nucleotide variations translate to phenotypic traits
EFFECT OF PYRUVATE CARBOXYLASE OVEREXPRESSION ON THE PHYSIOLOGY OF CORYNEBACTERIUM GLUTAMICUM
Pyruvate carboxylase was recently sequenced in Corynebacterium glutamicum and shown to play an important role of anaplerosis in the central carbon metabolism and amino acid synthesis of these bacteria. In this study we investigate the effect of the overexpression of the gene for pyruvate carboxylase (pyc) on the physiology of C. glutamicum ATCC 21253 and ATCC 21799 grown on defined media with two different carbon sources, glucose and lactate. In general, the physiological effects of pyc overexpression in Corynebacteria depend on the genetic background of the particular strain studied and are determined to a large extent by the interplay between pyruvate carboxylase and aspartate kinase activities. If the pyruvate carboxylase activity is not properly matched by the aspartate kinase activity, pyc overexpression results in growth enhancement instead of greater lysine production, despite its central role in anaplerosis and aspartic acid biosynthesis. Aspartate kinase regulation by lysine and threonine, pyruvate carboxylase inhibition by aspartate (shown in this study using permeabilized cells), as well as well-established activation of pyruvate carboxylase by lactate and acetyl coenzyme A are the key factors in determining the effect of pyc overexpression on Corynebacteria physiology.open1128sciescopu