14 research outputs found

    Effect of lactation length adjustment procedures on genetic parameter estimates for buffalo milk yield

    Get PDF
    The objectives of this study were to estimate the genetic parameters for milk yield unadjusted and adjusted for days in milk and, subsequently, to assess the influence of adjusting for days in milk on sire rank. Complete lactations from 90 or 150 days of lactation to 270 or 350 days in milk were considered in these analyses. Milk yield was adjusted for days in milk by multiplicative correction factors, or by including lactation length as a covariable in the model. Milk yields adjusted by different procedures were considered as different traits. Heritability estimates varied from 0.17 to 0.28. Genetic correlation estimates between milk yields unadjusted and adjusted for days in milk were greater than 0.82. Adjusting for days in milk affected the parameter estimates. Multiplicative correction factors produced the highest heritability estimates. More reliable breeding value estimates can be expected by including short length lactation records in the analyses and adjusting the milk yields for days in milk, regardless of the method used for the adjustment. High selection intensity coupled to the inclusion of short length lactations and adjustment with multiplicative factors can change the sire rank.

    Associations between the time of conception and the shape of the lactation curve in early lactation in Norwegian dairy cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was carried out to determine if an association exists between the shape of the lactation curve before it is influenced by the event of conception and the time from calving to conception in Norwegian dairy cattle. Lactation curves of Norwegian Red cows during 5 to 42 days in milk (DIM) were compared between cows conceiving between 43 and 93 DIM and cows conceiving after 93 DIM.</p> <p>Methods</p> <p>Data from 23,049 cows, represented by one lactation each, with 219,538 monthly test days were extracted from the Norwegian Dairy Herd Recording System, which represents 97% of all Norwegian dairy cows. Besides veterinary treatments, these records also included information on daily milk yield at monthly test days. The data were stratified by parity groups (1, 2, and 3 and higher) and time to conception periods (43-93 DIM and >93 DIM). The sample was selected using the following selection criteria: conception later than 42 DIM, calving season July to September, no records of veterinary treatment and the level of energy fed as concentrates between 8.69 and 12.83 MJ. The shape of the lactation curves were parameterized using a modified Wilmink-model in a mixed model analysis. Differences in the parameters of the lactation curves with different conception times were evaluated using confidence intervals.</p> <p>Results</p> <p>Lactation curves characterized by a low intercept and a steep ascending slope and a steep descending slope were associated with early conception across all parities. The peak milk yield was not associated with time of conception.</p> <p>Conclusions</p> <p>A practical application of the study results is the use of the shape of the lactation curve in future herd management. Groups of cows with impaired reproductive performance may be identified due to an unfavorable shape of the lactation curve. Monitoring lactation curves and adjusting the feeding strategy to adjust yield therefore may be useful for the improvement of reproductive performance at herd level.</p

    Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance. However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect sensitivity and specificity could influence animals' classification and impact on estimated variance components. This study was aimed at: (1) estimating the heritability of bacteria negative SCS, bacteria positive SCS, and infection status, (2) estimating phenotypic and genetic correlations between bacteria negative and bacteria positive SCS, and the genetic correlation between bacteria negative SCS and infection status, and (3) evaluating the impact of imperfect diagnosis of infection on variance component estimates.</p> <p>Methods</p> <p>Data on SCS and udder infection status for 1,120 ewes were collected from four Valle del Belice flocks. The pedigree file included 1,603 animals. The SCS dataset was split according to whether animals were infected or not at the time of sampling. A repeatability test-day animal model was used to estimate genetic parameters for SCS traits and the heritability of infection status. The genetic correlation between bacteria negative SCS and infection status was estimated using an MCMC threshold model, implemented by Gibbs Sampling.</p> <p>Results</p> <p>The heritability was 0.10 for bacteria negative SCS, 0.03 for bacteria positive SCS, and 0.09 for infection status, on the liability scale. The genetic correlation between bacteria negative and bacteria positive SCS was 0.62, suggesting that they may be genetically different traits. The genetic correlation between bacteria negative SCS and infection status was 0.51. We demonstrate that imperfect diagnosis of infection leads to underestimation of differences between bacteria negative and bacteria positive SCS, and we derive formulae to predict impacts on estimated genetic parameters.</p> <p>Conclusions</p> <p>The results suggest that bacteria negative and bacteria positive SCS are genetically different traits. A positive genetic correlation between bacteria negative SCS and liability to infection was found, suggesting that the approach of selecting animals for decreased SCS should help to reduce mastitis prevalence. However, the results show that imperfect diagnosis of infection has an impact on estimated genetic parameters, which may reduce the efficiency of selection strategies aiming at distinguishing between bacteria negative and bacteria positive SCS.</p
    corecore