2,765 research outputs found

    Investigating the effect of thermal gradients on stress in solid oxide fuel cell anodes using combined synchrotron radiation and thermal imaging

    Get PDF
    Thermal gradients can arise within solid oxide fuel cells (SOFCs) due to start-up and shut-down, non-uniform gas distribution, fast cycling and operation under internal reforming conditions. Here, the effects of operationally relevant thermal gradients on Ni/YSZ SOFC anode half cells are investigated using combined synchrotron X-ray diffraction and thermal imaging. The combination of these techniques has identified significant deviation from linear thermal expansion behaviour in a sample exposed to a one dimensional thermal gradient. Stress gradients are identified along isothermal regions due to the presence of a proximate thermal gradient, with tensile stress deviations of up to 75Â MPa being observed across the sample at a constant temperature. Significant strain is also observed due to the presence of thermal gradients when compared to work carried out at isothermal conditions

    Electro-thermal impedance spectroscopy applied to an open-cathode polymer electrolyte fuel cell

    Get PDF
    The development of in-situ diagnostic techniques is critical to ensure safe and effective operation of polymer electrolyte fuel cell systems. Infrared thermal imaging is an established technique which has been extensively applied to fuel cells; however, the technique is limited to measuring surface temperatures and is prone to errors arising from emissivity variations and reflections. Here we demonstrate that electro-thermal impedance spectroscopy can be applied to enhance infrared thermal imaging and mitigate its limitations. An open-cathode polymer electrolyte fuel cell is used as a case study. The technique operates by imposing a periodic electrical stimulus to the fuel cell and measuring the consequent surface temperature response (phase and amplitude). In this way, the location of heat generation from within the component can be determined and the thermal conduction properties of the materials and structure between the point of heat generation and the point of measurement can be determined. By selectively ‘locking-in’ to a suitable modulation frequency, spatially resolved images of the relative amplitude between the current stimulus and temperature can be generated that provide complementary information to conventional temporal domain thermograms

    The optical microscopy with virtual image breaks a record: 50-nm resolution imaging is demonstrated

    Full text link
    We demonstrate a new 'microsphere nanoscope' that uses ordinary SiO2 microspheres as superlenses to create a virtual image of the object in near field. The magnified virtual image greatly overcomes the diffraction limit. We are able to resolve clearly 50-nm objects under a standard white light source in both transmission and reflection modes. The resolution achieved for white light opens a new opportunity to image viruses, DNA and molecules in real time

    In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    Get PDF
    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features

    Diet folate, DNA methylation and genetic polymorphisms of MTHFR C677T in association with the prognosis of esophageal squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Folic acid may affect the development of human cancers. However, few studies have evaluated the consumption of diet folate in the prognosis of patients with esophageal squamous cell carcinoma (ESCC).</p> <p>Methods</p> <p>One hundred and twenty five ESCC patients underwent esophagectomy between January 2005 and March 2006 in the Yangzhong People's Hospital were recruited and followed up. The effects of diet folate, aberrant DNA methylation of selected genes and methylenetetrahydrofolate reductase (<it>MTHFR</it>) C677T genetic polymorphisms on the prognosis of ESCC were evaluated by using Cox proportional hazard regression models.</p> <p>Results</p> <p>Our analysis showed an inverse association between diet folate intake and the risk of death after esophagectomy. The median survival time was 3.06 years for low or moderate folate consumption and over 4.59 years for high folate consumption. After adjusting for potential confounders, the hazard ratios (95% confidence interval) [HRs (95% CI)] were 0.72 (0.36-1.46) for moderate and 0.39 (0.20-0.78) for high folate intake, respectively (<it>P </it>for trend = 0.007). This preventive effect was more evident in patients carrying <it>MTHFR </it>677CC genotype. No significant relation was observed between aberrant DNA methylation of <it>P16</it>, <it>MGMT </it>and <it>hMLH1 </it>gene, as well as <it>MTHFR </it>C677T genetic polymorphisms and the prognosis of ESCC.</p> <p>Conclusions</p> <p>Our research indicated that diet folate intake may have benefits on the prognosis of ESCC after esophagectomy. From a practical viewpoint, the findings of our study help to establish practical intervention and surveillance strategies for managements of ESCC patients and can finally decrease the disease burden.</p

    A Poorly Known High-Latitude Parasitoid Wasp Community: Unexpected Diversity and Dramatic Changes through Time

    Get PDF
    Climate change will have profound and unanticipated effects on species distributions. The pace and nature of this change is largely unstudied, especially for the most diverse elements of terrestrial communities – the arthropods – here we have only limited knowledge concerning the taxonomy and the ecology of these groups. Because Arctic ecosystems have already experienced significant increases in temperature over the past half century, shifts in community structure may already be in progress. Here we utilise collections of a particularly hyperdiverse insect group – parasitoid wasps (Hymenoptera; Braconidae; Microgastrinae) – at Churchill, Manitoba, Canada in the early and mid-twentieth century to compare the composition of the contemporary community to that present 50–70 years ago. Morphological and DNA barcoding results revealed the presence of 79 species of microgastrine wasps in collections from Churchill, but we estimate that 20% of the local fauna awaits detection. Species composition and diversity between the two time periods differ significantly; species that were most common in historic collections were not found in contemporary collections and vice versa. Using barcodes we compared these collections to others from across North America; contemporary Churchill species are most affiliated with more south-western collections, while historic collections were more affiliated with eastern collections. The past five decades has clearly seen a dramatic change of species composition within the area studied coincident with rising temperature

    Orthopaedic health status of horses from 8 riding schools - a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Orthopaedic injury is the most common reason for lameness and wastage in sport and leisure horses. Studies on racehorses have shown differences in injury risk between trainers and training strategies. The aim was to study between riding school variation in orthopaedic health status by clinical examination and horses age, and control for change of examiner, in schools with previous high (n = 4) and low (n = 4) insurance utilisation.</p> <p>Methods</p> <p>Horses (n = 99) at 8 riding schools were examined for conformation, movement in all gaits, standing flexion tests and palpation by two veterinary surgeons (in some schools only one). Indexes of findings were created for total health, movements, limbs, conformation and back palpation.</p> <p>Results</p> <p>Logistic regression analyses showed that findings increased with age (walk, trot, canter, conformation left hind limb, palpation fore limbs, hooves and flexion tests) or decreased with age (conformation right fore limb). Significant differences in findings were found between riding schools and examiner for seven and eight criteria each (partly overlapping). Increasing indexes were significantly associated with one examiner (total health, movements, back palpation), increasing age (total health, movements) or more time at the school (limbs). The back palpation index was highest at 5 < 8 years since acquisition.</p> <p>Conclusion</p> <p>The age distribution differed markedly between riding schools and age affected several types of findings. This, combined with the two opposite groups of insurance use, shows that schools with low insurance utilisation had previously been able to "avoid" using the insurance, maybe even on similar types of cases if these were more promptly/differently handled indicating differential coverage of disease data in the insurance database. The examiner effect was clearly demonstrated. For some findings, the amount of clinical observations differed by school, even when examiner and age was adjusted for. Most findings were of minor importance, including slight movement irregularities. Orthopaedic status varies between riding schools. We hypothesize that this is associated with management factors that warrant further study.</p

    Activity profiles of elite wheelchair rugby players during competition

    Get PDF
    To quantify the activity profiles of elite wheelchair rugby and establish classification-specific arbitrary speed zones. Additionally, indicators of fatigue during full matches were explored. Methods: Seventy-five elite wheelchair rugby players from eleven national teams were monitored using a radio-frequency based, indoor tracking system across two international tournaments. Players who participated in complete quarters (n = 75) and full matches (n = 25) were included and grouped by their International Wheelchair Rugby Federation functional classification: group I (0-0.5), II (1.0-1.5), III (2.0-2.5) and IV (3.0-3.5). Results: During a typical quarter, significant increases in total distance (m), relative distance (m·minˉ¹), and mean speed (m·sˉ¹) were associated with an increase in classification group (P < 0.001), with the exception of group III and IV. However, group IV players achieved significantly higher peak speeds (3.82 ± 0.31 m·sˉ¹) than groups I (2.99 ± 0.28 m·sˉ¹), II (3.44 ± 0.26 m·sˉ¹) and III (3.67 ± 0.32 m·sˉ¹). Groups I and II differed significantly in match intensity during very low/low speed zones and the number of high-intensity activities in comparison with groups III and IV (P < 0.001). Full match analysis revealed that activity profiles did not differ significantly between quarters. Conclusions: Notable differences in the volume of activity were displayed across the functional classification groups. However, the specific on-court requirements of defensive (I and II) and offensive (III and IV) match roles appeared to influence the intensity of match activities and consequently training prescription should be structured accordingly
    corecore