30,235 research outputs found
A Large-scale Distributed Video Parsing and Evaluation Platform
Visual surveillance systems have become one of the largest data sources of
Big Visual Data in real world. However, existing systems for video analysis
still lack the ability to handle the problems of scalability, expansibility and
error-prone, though great advances have been achieved in a number of visual
recognition tasks and surveillance applications, e.g., pedestrian/vehicle
detection, people/vehicle counting. Moreover, few algorithms explore the
specific values/characteristics in large-scale surveillance videos. To address
these problems in large-scale video analysis, we develop a scalable video
parsing and evaluation platform through combining some advanced techniques for
Big Data processing, including Spark Streaming, Kafka and Hadoop Distributed
Filesystem (HDFS). Also, a Web User Interface is designed in the system, to
collect users' degrees of satisfaction on the recognition tasks so as to
evaluate the performance of the whole system. Furthermore, the highly
extensible platform running on the long-term surveillance videos makes it
possible to develop more intelligent incremental algorithms to enhance the
performance of various visual recognition tasks.Comment: Accepted by Chinese Conference on Intelligent Visual Surveillance
201
Scheduling problems with the effects of deterioration and learning
Author name used in this publication: T. C. E. Cheng2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
Single-machine scheduling with deteriorating jobs under a series-parallel graph constraint
Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
Evaluation of the efficacy and safety of high dose short duration enrofloxacin treatment regimen for uncomplicated urinary tract infections in dogs.
BackgroundUncomplicated urinary tract infections (UTI) in dogs usually are treated with antimicrobial drugs for 10-14 days. Shorter duration antimicrobial regimens have been evaluated in human patients.HypothesisA high dose short duration (HDSD) enrofloxacin protocol administered to dogs with uncomplicated UTI will not be inferior to a 14-day treatment regimen with amoxicillin-clavulanic acid.AnimalsClient-owned adult, otherwise healthy dogs with aerobic bacterial urine culture yielding ≥ 10(3) CFU/mL of bacteria after cystocentesis.MethodsProspective, multicenter, controlled, randomized blinded clinical trial. Enrolled dogs were randomized to group 1 (enrofloxacin 18-20 mg/kg PO q24h for 3 days) or group 2 (amoxicillin-clavulanic acid 13.75-25 mg/kg PO q12h for 14 days). Urine cultures were obtained at days 0, 10, and 21. Microbiologic and clinical cure rates were evaluated 7 days after antimicrobial treatment was discontinued. Lower urinary tract signs and adverse events also were recorded.ResultsThere were 35 dogs in group 1 and 33 in group 2. The microbiologic cure rate was 77.1 and 81.2% for groups 1 and 2, respectively. The clinical cure rate was 88.6 and 87.9% for groups 1 and 2, respectively. Cure rates between groups did not differ according to the selected margin of noninferiority.Conclusions and clinical importanceHDSD enrofloxacin treatment was not inferior to a conventional amoxicillin-clavulanic acid protocol for the treatment of uncomplicated bacterial UTI in dogs. Further research is warranted to determine if this protocol will positively impact owner compliance and decrease the emergence of antimicrobial resistance
Aligning Manifolds of Double Pendulum Dynamics Under the Influence of Noise
This study presents the results of a series of simulation experiments that
evaluate and compare four different manifold alignment methods under the
influence of noise. The data was created by simulating the dynamics of two
slightly different double pendulums in three-dimensional space. The method of
semi-supervised feature-level manifold alignment using global distance resulted
in the most convincing visualisations. However, the semi-supervised
feature-level local alignment methods resulted in smaller alignment errors.
These local alignment methods were also more robust to noise and faster than
the other methods.Comment: The final version will appear in ICONIP 2018. A DOI identifier to the
final version will be added to the preprint, as soon as it is availabl
Full Length Research Paper Curcumin induces cleavage of -catenin by activation of capases and downregulates the β-catenin/Tcf signaling pathway in HT-29 cells
β-Catenin/Tcf-4 signaling pathway plays important roles in colorectal tumorigenesis. RT-PCR, western blotting and immunoprecipitation were used to study the effects of curcumin on β-catenin/Tcf-4 signaling pathway in HT-29 cells. Treatment of curcumin could induce cleavage of β-catenin and the cleavage could be inhibited by caspase inhibitors. The association of β-catenin with Tcf-4 in nucleus could be inhibited by curcumin. The expression of c-myc and cyclinD1 was downregulated by curcumin, which could not be blocked by Z-DEVD-FMK. The results showed curcumin could induce thecleavage of β-catenin by activition of caspases and downregulate the activity of β-catenin/Tcf signaling pathway independent of the caspases in HT-29 cells
Class II ADP-ribosylation factors are required for efficient secretion of Dengue viruses
This article is available open access through the publisher’s website.Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle. We show that simultaneous depletion of Arf4 and Arf5 blocks recombinant subviral particle secretion for all four dengue serotypes. Immunostaining analysis suggests that class II Arf proteins are required at an early pre-Golgi step for dengue virus secretion. Using a horseradish peroxidase protein fused to a signal peptide, we show that class II Arfs act specifically on dengue virus secretion without altering the secretion of proteins through the constitutive secretory pathway. Co-immunoprecipitation data demonstrate that the dengue prM glycoprotein interacts with class II Arf proteins but not through its C-terminal VXPX motif. Finally, experiments performed with replication-competent dengue and yellow fever viruses demonstrate that the depletion of class II Arfs inhibits virus secretion, thus confirming their implication in the virus life cycle, although data obtained with West Nile virus pointed out the differences in virus-host interactions among flaviviruses. Our findings shed new light on a molecular mechanism used by dengue viruses during the late stages of the life cycle and demonstrate a novel function for class II Arf proteins.Research Fund for Control of Infectious Diseases of Hong Kong and BNP Paribas Corporate and Investment Banking
Magnetoresistive biosensors with on-chip pulsed excitation and magnetic correlated double sampling.
Giant magnetoresistive (GMR) sensors have been shown to be among the most sensitive biosensors reported. While high-density and scalable sensor arrays are desirable for achieving multiplex detection, scalability remains challenging because of long data acquisition time using conventional readout methods. In this paper, we present a scalable magnetoresistive biosensor array with an on-chip magnetic field generator and a high-speed data acquisition method. The on-chip field generators enable magnetic correlated double sampling (MCDS) and global chopper stabilization to suppress 1/f noise and offset. A measurement with the proposed system takes only 20 ms, approximately 50× faster than conventional frequency domain analysis. A corresponding time domain temperature correction technique is also presented and shown to be able to remove temperature dependence from the measured signal without extra measurements or reference sensors. Measurements demonstrate detection of magnetic nanoparticles (MNPs) at a signal level as low as 6.92 ppm. The small form factor enables the proposed platform to be portable as well as having high sensitivity and rapid readout, desirable features for next generation diagnostic systems, especially in point-of-care (POC) settings
Melt conditioning by advanced shear technology (MCAST) for refining solidification microstructures
MCAST (melt conditioning by advanced shear technology) is a novel processing technology developed recently by BCAST at Brunel University for conditioning liquid metal prior to solidification processing. The MCAST process uses a twin screw mechanism to impose a high shear rate and a high intensity of turbulence to the liquid metal, so that the conditioned liquid metal has uniform temperature, uniform chemical composition and well-dispersed and completely wetted oxide particles with a fine size and a narrow size distribution. The microstructural refinement is achieved through an enhanced heterogeneous nucleation rate and an increased nuclei survival rate during the subsequent solidification processing. In this paper we present the MCAST process and its applications for microstructural refinement in both shape casting and continuous casting of light alloys
- …