71 research outputs found
Broken symmetry states and divergent resistance in suspended bilayer graphene
Graphene [1] and its bilayer have generated tremendous excitement in the
physics community due to their unique electronic properties [2]. The intrinsic
physics of these materials, however, is partially masked by disorder, which can
arise from various sources such as ripples [3] or charged impurities [4].
Recent improvements in quality have been achieved by suspending graphene flakes
[5,6], yielding samples with very high mobilities and little charge
inhomogeneity. Here we report the fabrication of suspended bilayer graphene
devices with very little disorder. We observe fully developed quantized Hall
states at magnetic fields of 0.2 T, as well as broken symmetry states at
intermediate filling factors , , and . The
devices exhibit extremely high resistance in the state that grows
with magnetic field and scales as magnetic field divided by temperature. This
resistance is predominantly affected by the perpendicular component of the
applied field, indicating that the broken symmetry states arise from many-body
interactions.Comment: 23 pages, including 4 figures and supplementary information; accepted
to Nature Physic
Electronic Spin Transport in Dual-Gated Bilayer Graphene
The elimination of extrinsic sources of spin relaxation is key in realizing
the exceptional intrinsic spin transport performance of graphene. Towards this,
we study charge and spin transport in bilayer graphene-based spin valve devices
fabricated in a new device architecture which allows us to make a comparative
study by separately investigating the roles of substrate and polymer residues
on spin relaxation. First, the comparison between spin valves fabricated on
SiO2 and BN substrates suggests that substrate-related charged impurities,
phonons and roughness do not limit the spin transport in current devices. Next,
the observation of a 5-fold enhancement in spin relaxation time in the
encapsulated device highlights the significance of polymer residues on spin
relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated
bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence
of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin
relaxation time decreases monotonically as carrier concentration increases, and
n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The
sudden increase in the spin relaxation time with no corresponding signature in
the charge transport suggests the presence of a magnetic resonance close to the
charge neutrality point. We also demonstrate, for the first time, spin
transport across bipolar p-n junctions in our dual-gated device architecture
that fully integrates a sequence of encapsulated regions in its design. At low
temperatures, strong suppression of the spin signal was observed while a
transport gap was induced, which is interpreted as a novel manifestation of
impedance mismatch within the spin channel
Dual-gated bilayer graphene hot electron bolometer
Detection of infrared light is central to diverse applications in security,
medicine, astronomy, materials science, and biology. Often different materials
and detection mechanisms are employed to optimize performance in different
spectral ranges. Graphene is a unique material with strong, nearly
frequency-independent light-matter interaction from far infrared to
ultraviolet, with potential for broadband photonics applications. Moreover,
graphene's small electron-phonon coupling suggests that hot-electron effects
may be exploited at relatively high temperatures for fast and highly sensitive
detectors in which light energy heats only the small-specific-heat electronic
system. Here we demonstrate such a hot-electron bolometer using bilayer
graphene that is dual-gated to create a tunable bandgap and
electron-temperature-dependent conductivity. The measured large electron-phonon
heat resistance is in good agreement with theoretical estimates in magnitude
and temperature dependence, and enables our graphene bolometer operating at a
temperature of 5 K to have a low noise equivalent power (33 fW/Hz1/2). We
employ a pump-probe technique to directly measure the intrinsic speed of our
device, >1 GHz at 10 K.Comment: 5 figure
Microscopic Polarization in Bilayer Graphene
Bilayer graphene has drawn significant attention due to the opening of a band
gap in its low energy electronic spectrum, which offers a promising route to
electronic applications. The gap can be either tunable through an external
electric field or spontaneously formed through an interaction-induced symmetry
breaking. Our scanning tunneling measurements reveal the microscopic nature of
the bilayer gap to be very different from what is observed in previous
macroscopic measurements or expected from current theoretical models. The
potential difference between the layers, which is proportional to charge
imbalance and determines the gap value, shows strong dependence on the disorder
potential, varying spatially in both magnitude and sign on a microscopic level.
Furthermore, the gap does not vanish at small charge densities. Additional
interaction-induced effects are observed in a magnetic field with the opening
of a subgap when the zero orbital Landau level is placed at the Fermi energy
Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions
The rise of topological phases of matter is strongly connected to their
potential to host Majorana bound states, a powerful ingredient in the search
for a robust, topologically protected, quantum information processing. In order
to produce such states, a method of choice is to induce superconductivity in
topological insulators. The engineering of the interplay between
superconductivity and the electronic properties of a topological insulator is a
challenging task and it is consequently very important to understand the
physics of simple superconducting devices such as Josephson junctions, in which
new topological properties are expected to emerge. In this article, we review
recent experiments investigating topological superconductivity in topological
insulators, using microwave excitation and detection techniques. More
precisely, we have fabricated and studied topological Josephson junctions made
of HgTe weak links in contact with two Al or Nb contacts. In such devices, we
have observed two signatures of the fractional Josephson effect, which is
expected to emerge from topologically-protected gapless Andreev bound states.
We first recall the theoretical background on topological Josephson junctions,
then move to the experimental observations. Then, we assess the topological
origin of the observed features and conclude with an outlook towards more
advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017,
published in "Topological Matter. Springer Series in Solid-State Sciences,
vol 190. Springer
Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field
We present transport measurements on a strongly coupled graphene quantum dot
in a perpendicular magnetic field. The device consists of an etched
single-layer graphene flake with two narrow constrictions separating a 140 nm
diameter island from source and drain graphene contacts. Lateral graphene gates
are used to electrostatically tune the device. Measurements of Coulomb
resonances, including constriction resonances and Coulomb diamonds prove the
functionality of the graphene quantum dot with a charging energy of around 4.5
meV. We show the evolution of Coulomb resonances as a function of perpendicular
magnetic field, which provides indications of the formation of the graphene
specific 0th Landau level. Finally, we demonstrate that the complex pattern
superimposing the quantum dot energy spectra is due to the formation of
additional localized states with increasing magnetic field.Comment: 6 pages, 4 figure
Electric double-layer capacitance between an ionic liquid and few-layer graphene
Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance C-g. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance C-EDL between the ionic liquid and graphene involves the series connection of C-g and the quantum capacitance C-q, which is proportional to the density of states. We investigated the variables that determine C-EDL at the molecular level by varying the number of graphene layers n and thereby optimising C-q. The C-EDL value is governed by C-q at n, 4, and by C-g at n > 4. This transition with n indicates a composite nature for C-EDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor
Observation of an electrically tunable band gap in trilayer graphene
A striking feature of bilayer graphene is the induction of a significant band
gap in the electronic states by the application of a perpendicular electric
field. Thicker graphene layers are also highly attractive materials. The
ability to produce a band gap in these systems is of great fundamental and
practical interest. Both experimental and theoretical investigations of
graphene trilayers with the typical ABA layer stacking have, however, revealed
the lack of any appreciable induced gap. Here we contrast this behavior with
that exhibited by graphene trilayers with ABC crystallographic stacking. The
symmetry of this structure is similar to that of AB stacked graphene bilayers
and, as shown by infrared conductivity measurements, permits a large band gap
to be formed by an applied electric field. Our results demonstrate the critical
and hitherto neglected role of the crystallographic stacking sequence on the
induction of a band gap in few-layer graphene.Comment: 10 pages, 5 figures, including the supplementary information on the
electron-hole asymmetry of ABA-stacked trilaye
Why all the fuss about 2D semiconductors?
Graphene is no longer alone; a family of atomically thin 2D semiconductors
has emerged. Optoelectronics and photonics applications are in their
experimental infancy but the future holds much promise.Comment: Commentary article, 1 figure, 1 tabl
A Tunable Phonon-Exciton Fano System in Bilayer Graphene
Interference between different possible paths lies at the heart of quantum
physics. Such interference between coupled discrete and continuum states of a
system can profoundly change its interaction with light as seen in Fano
resonance. Here we present a unique many-body Fano system composed of a
discrete phonon vibration and continuous electron-hole pair transitions in
bilayer graphene. Mediated by the electron-phonon interactions, the excited
state is described by new quanta of elementary excitations of hybrid
phonon-exciton nature. Infrared absorption of the hybrid states exhibit
characteristic Fano lineshapes with parameters renormalized by many-body
interactions. Remarkably, the Fano resonance in bilayer graphene is
continuously tunable through electrical gating. Further control of the
phonon-exciton coupling may be achieved with an optical field exploiting the
excited state infrared activity. This tunable phonon-exciton system also offers
the intriguing possibility of a 'phonon laser' with stimulated phonon
amplification generated by population inversion of band-edge electrons.Comment: 21 pages, 3 figure
- …
