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Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and
extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been
achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and
graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the
density of states. We investigated the variables that determine CEDL at the molecular level by varying the
number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n , 4, and by
Cg at n . 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal
principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives
on charge accumulation and energy storage using an ultimately thin capacitor.

S
ingle-layer graphene (SLG) has two kinds of singularities. One is a topological singularity at K points in
non-doped SLG, called the Dirac point. The carrier transport at the Dirac point, with a vanishing density of
states D(E), has been intensively studied1–5. The other is the van Hove singularity at M points in highly

doped SLG, which has recently attracted significant attention due to predictions of several novel phenomena such
as superconductivity6,7, ferromagnetism8, and charge/spin density waves9,10 caused by divergent D(E) and a band
structure with high symmetry. We can reach this state by doping SLG with 0.25 electrons or holes per carbon atom
(,1 3 1015 /cm2). This high carrier density is expected to be attainable with an ionic-liquid gate because of its thin
electronic double layer (EDL)11–14, i.e. large geometrical capacitance determined by Cg 5 eILe0/d. Here, eIL, e0 and d
are the relative permittivity of the ionic liquid, vacuum permittivity, and thickness of EDL, respectively. However,
studies have demonstrated that carrier doping into SLG with ionic liquids is much lower than expected15,16. This is
because the potential difference between an ionic liquid and SLG is made smaller than the applied gate voltage Vg

by the shift of the Fermi energy EF when doping SLG with an additional charge of Q. This phenomenon can be
interpreted in terms of the quantum capacitance Cq, defined as Cq 5 eQ/EF 5 e2D(EF)15,17,18, which is connected to
Cg in series. Thus, the total capacitance CEDL between the ionic liquid and SLG is understood as follows:

1=CEDL~1=Cgz1=Cq ð1Þ

The effect of Cq is prominent when Cq = Cg, which is characteristic of the combination of SLG with small Cq and
an ionic liquid with a large Cg. Thus, even if an ionic liquid has a large Cg, small Cq limits CEDL to make high charge
density unattainable. Here, increasing the layer number n might solve this problem, because D(E) increases with
n, and accordingly Cq increases. To find an optimal n for carrier doping with an ionic liquid is thus quite
important for the discovery of novel ordered states in graphene. In addition, the CEDL will increase with n, but
the specific surface area (the surface area per unit of mass) of few-layer graphene (FLG) decreases. In a practical
viewpoint to realise the superior characteristics in graphene-based supercapacitor19,20, therefore, it is of signifi-
cance to elucidate the optimal n producing both the large CEDL and specific surface area. In this letter, we examine
the capacitance of SLG and FLG while systematically changing n.

Results
Our results are summarized in Figs. 1a and 1b. The capacitance CEDL between the ionic liquid and FLG was
measured as a function of n by two methods, a transport measurement using graphene field effect transistors
(FETs) (Fig. 1a), and a capacitance measurement using AC (Fig. 1b). When the gate voltage Vg induces the charge
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Q(Vg), CEDL
DC 5 Q/Vg and CEDL

AC 5 dQ/dVg are obtained by the
transport and capacitance measurements, respectively. These two
measurements are complementary to each other and are especially
important in the estimation of CEDL, which depends significantly on
measurement frequency due to the slow transport of the ions in an
ionic liquid. The calculated values of CEDL are also shown in Figs. 1a
and 1b, and are in good agreement with the experimental data. At
n 5 1, a small CEDL is observed, as in previous studies15,16. With
increasing n, CEDL increases and saturates at n . 4. In the following,
we describe the experimental and theoretical details.

First, we evaluated CEDL from transport measurements. Two-ter-
minal graphene FETs were prepared on SiO2 300 nm/highly doped
Si substrate. The structure of the device and the optical microscope
image are shown in Fig. 2a. In order to obtain a reliable n depend-
ence, we used only uniform graphene layers without any overlaps of
different layers, wrinkles or folds. If the device has overlaps of dif-
ferent layers, the exposure of interstices between the neighbouring
graphene layers to the ionic liquid might lead to inaccurate n and
errors in estimation of surface area. The uniformity of graphene layer
was clearly confirmed by the optical contrast of micrographs16,21–24.
Raman spectroscopy mapping and atomic force microscope (AFM)
image also evidenced the uniformity of the graphene layer. The
number of devices used in this measurement is shown in Table 1;
good reproducibility was obtained. The sheet conductivity s was
measured as a function of back gate voltage Vbg applied to the Si
substrate. Next, a droplet of ionic liquid was placed on the graphene
surface, and s was measured again as a function of the top gate
voltage Vtg applied to the ionic liquid with a Pt wire (100 mm in
diameter). In Figs. 2b–2d, ss of FLG FETs with n 5 1, 4, and 9 are
plotted as functions of Vbg and Vtg. Note that the horizontal scales are
different for Vbg and Vtg. It was found that s was modulated with a
lower gate voltage for Vtg than Vbg. The conductivity varied with gate
voltage in proportion to the capacitance as follows, ds=dVtg

�� ��~
CEDLmtg or ds=dVbg

�� ��~Cbgmbg, where m is electric field mobility
and the subscript tg (bg) means top (back) gate. Thus, CEDL is given
by

CEDL~
ds=dVtg

ds=dVbg

mbg

mtg
Cbg ð2Þ

Here, ds=dVtg(bg)is defined as the steepest slope of the experimental
data around the charge neutrality point. Assuming mbg/mtg 5 1 and
substituting the experimental value of Cbg 5 11.5 nF/cm2, CEDL is
calculated for each device and plotted in Fig. 1a. A clear n depend-
ence of CEDL is found in Fig. 1a. CEDL is a minimum at n 5 1. With
increasing n, CEDL shows a maximum at n 5 4 and decreases

smoothly as n approaches 10. Maximum carrier density was esti-
mated to be 0.003 /C atom (4.7 3 1013 /cm2) at n 5 4 and Vtg 5 2 V.

In order to prove the validity of CEDL(n) obtained by the transport
technique, we directly measured the capacitance using AC. The
device structure and the optical microscope image are shown in
Fig. 3a. Uniform graphene layers are carefully chosen in this mea-
surement. The graphene layer was covered with photoresist except
for a region about 15 mm square, on which a droplet of the ionic
liquid was placed. AC voltage was applied across the interface
between the ionic liquid and FLG, and the capacitance CEDL was
evaluated by the out-of-phase components of the detected current.
CEDL was measured with an excitation amplitude of 10 mV at a
frequency of 500 Hz and with a superimposed DC bias voltage Vtg

ranging from 21 to 11 V. The equivalent circuit of our system is
shown in Fig. 3a16. Here, it should be noticed that the contact area
between the ionic liquid and Pt electrode is much larger than the area
between the ionic liquid and FLG. Hence, the impedance of CPt is
negligible compared to that of CEDL. This means that Vtg is effectively
applied at the interface between the ionic liquid and FLG. Note that
Vtg is uniform along this interface, because the impedance of CEDL (,
108 V) is much larger than the resistance of FLG (103 – 104 V). The
measured impedance is typically Z , 106 – 108 i V at a frequency of
500 Hz. Therefore, the capacitive component dominates the total
impedance, showing that CEDL can be directly determined by the
measurement with LCR meter as described in the method section.

In Fig. 3b, CEDL for n 5 6 is plotted as a function of Vtg. We found
that CEDLs for all the devices significantly depended on Vtg, which
corresponds to the ambipolar behaviour in D(E). Here it is important
to notice that Vtg in our experiment may be different from the actual
voltage applied to the FLG since the potential drop caused by the
interface of the Pt wire is not considered. The accurate dc bias in the
electrochemical impedance analysis may be defined as the potential
difference from the reference electrode using a three-terminal
setup15. However, in our devices used in this study, the potential drop
at the Pt interface is expected to be so small that applied voltage from
the ground is approximately equal to the actual voltage, because the
Pt electrode is much wider than the channel region of FLG, as
described above. To compare with the transport measurement, the
CEDL for each device, obtained at the charge neutrality point, is
plotted as a function of n in Fig. 1b. Here the charge neutrality point
is defined as the Vtg where CEDL exhibited the lowest value, and is
located around Vtg 5 0 V as shown in Fig. 3b. Since Vtg , 0 V, the
value of minimum capacitance is obtained without any ambiguities
of the bias voltage. Consequently, the discussion on n dependence of
capacitance shown in Fig. 1b is appropriate. As shown in Figs. 1a and
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Figure 1 | Layer-number dependence of EDL capacitance between graphene and ionic liquid (a), CEDL evaluated from conductivity measurements (Fig. 2

and Supplementary Fig. S2 online) for SLG and FLG devices. The CEDL values measured in hole-carrier and electron-carrier regimes using two-terminal

devices are indicated by blue solid circles and red open circles, respectively. The CEDL values evaluated from Hall coefficients are indicated by green

triangles. (b), CEDL directly measured with AC (Fig. 3). The minimum CEDL values from Vtg 5 21 to 1 V are plotted. In (a) and (b), the error bars are the

standard deviation of the data measured for each n device. The black solid lines in (a) and (b) represent calculated CEDL based on a simple theoretical

model (Fig. 4). Dependencies of experimental data on n are consistent with the model.
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1b, a CEDL - n plot is substantially consistent with that from the
transport measurement, which supports the validity of our estima-
tion of CEDL from the transport measurement.

Discussion
Here, we discuss the validity of the CEDL obtained by two-terminal
transport measurements. The analysis using equation (2) might
oversimplify the estimation of CEDL because the contribution of
mbg/mtg is bypassed. First, we consider the validity of the assumption
of mbg/mtg 5 1. This assumption is required because CEDL and mtg

cannot be determined independently without the result of Hall effect.
In order to investigate the validity of this assumption, we carried out
additional transport measurement using the multi-terminal Hall bar
devices with n 5 1, 2, 7, and 12. (see Supplementary Fig. S2 online).
In this method, we can independently determine CEDL and mtg

without any assumption. By measuring the Hall coefficient, RH,
and s in four-terminal geometry under the gate voltage Vg (Vbg

and Vtg), we can evaluate m (mbg and mtg) and C (Cbg and CEDL)
independently by using the following equations25,26.

m~ sRHj j ð3Þ

CVg~{1=RH ð4Þ

These equations are satisfied in the doped region where only one
kind of carrier presents. RH was measured as a function of Vtg under
perpendicular magnetic field of 6 kOe. The values of CEDL were
estimated from the slope of 1/RH - Vtg curve in the range where

equation (4) holds. The CEDL - n plot is shown in Fig. S2b and
CEDLs are added in the graph in two-terminal measurement
(Fig. 1a). This shows a good agreement between the CEDL values
obtained from two-terminal transport with assumption of mbg/mtg

5 1 and Hall effect without any assumption. Therefore, this result
proves the validity of the assumption of mbg/mtg , 1 in the analysis in
two-terminal geometry.

Furthermore, we deduced mbg and mtg separately by substituting
both RH and s in four-terminal geometry into equation (3), and
evaluated mbg/mtg. The result is shown in Fig. S2c. The mbg/mtg scarcely
depends on n and is regarded as a constant around 0.5. The differ-
ence, 1 and 0.5, in mbg/mtg between two analyses described above may
be closely associated with the contact resistance. The contact resist-
ance reduces the conductance measured in two-terminal geometry,
and this effect becomes more significant in highly doped graphene.
Accordingly, mtg in two-terminal measurement could be underesti-
mated, because mtg is estimated in more carrier-accumulated region
than mbg, while mtg and mbg evaluated from RH and s measured in
four-terminal geometry are not affected by the contact resistance.
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Figure 2 | CEDL obtained by 2-terminal transport measurement (a), Schematic side view of two-terminal graphene FET and optical microscope image of a

device. Scale bar is 10 mm. Materials and terminal configurations are indicated. After s(Vbg) was measured using the circuit shown by orange lines, an

ionic liquid was applied and s(Vtg) was measured using the circuit shown by blue lines. Actual size of Pt wire (100 mm in diameter) is much larger than the

channel length (10 mm), but it is depicted as a thin wire in the figure for clarity. (b), (c), (d), Comparison of s(Vbg) (orange line) and s(Vtg) (blue line) for

SLG (b), 4-layer (c), and 9-layer graphene (d). Note that the horizontal scales are different for Vbg and Vtg. To determine CEDL from equation (2),

we estimated ds/dVtg(bg) as the steepest slope of the s(Vtg(bg)) curve. The gate voltages were swept from negative to positive values.

Table 1 | Number of FLG devices prepared in this study

layer number 1 2 3 4 5 6 7 8 9 10 total

Transport
measurement

4 4 4 3 1 5 1 2 3 3 30

Capacitance
measurement

1 2 1 4 2 3 1 2 0 2 18
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This may be one of the reasons why the difference in mbg/mtg takes
place between two analyses. It is reasonable that mbg/mtg using two-
terminal mobility enhances from the value (, 0.5) of mbg/mtg esti-
mated from Hall bar devices (RH and s in four-terminal geometry).
Thus, mbg/mtg in two-terminal geometry can be concluded to be close
to unity as we assumed in the analysis of equation (2).

Finally, to give physical meaning to the experimental result, we
calculated the charge distribution in the FLG that forms the EDL
capacitor, and obtained CEDL as a function of n. We define UEDL (5
Q2/2CEDL) as the total energy stored in the EDL capacitor where
charges 1Q and 2Q are condensed in the ionic liquid and FLG
boundaries, respectively. As shown in Fig. 4a, the charge 2Q is dis-
tributed over the layers so as to screen penetration of the electric field
into the interior. The electric field Ei between the i-th and i11-th
layer becomes smaller than Ei-1 owing to the charge 2qi lying on the
i-th layer, where i 5 1, ..., n is numbered from the ionic liquid side.
Then, Cg is obtained by Cg 5 Q2/2Ug, where Ug is the static field
energy due to Ei:

Ug(n)~
1
2

Xn{1

i~0

eie0

ð
Ei(r)2dr~

Q2d
2eILe0

z
t

2egre0

Xn{1

i~1

(Q{
Xi

j~1

qj)
2 ð5Þ

where egr 5 5.7 is the relative permittivity of graphite27 and t 5

0.34 nm is the distance between graphene layers28. The first term
in the right-side expression shows the classical electric field energy
accumulated in EDL and the second term indicates that in n-layer

graphene. Note that a familiar formula Cg~eILe0=d is obtained for
SLG owing to n 5 1. On the other hand, we can relate Cq to the band
filling energy Uq

29, Cq 5 Q2/2Uq. Originally Cq was introduced to
explain the incomplete shielding of the electric field effect for a two-
dimensional electron gas17. We extend this concept to thicker films
that can completely screen the electric field by expressing Uq as a
summation of the band-filling energy in each layer;

Uq(n)~
Xn

i~1

ðEFi

0
ED(E)dE~

Xn

i~1

q2
i

2e2D
ð6Þ

where EFi is the Fermi energy of the i-th layer. For simplicity, we used
a constant D(E) to deduce the second equality. As mentioned before,
Cq 5 e2D is obtained for SLG. We minimized UEDL (5 Ug 1 Uq) with
respect to each qi of the variational parameters and thereby deter-
mined Ug, Uq, and UEDL. Using these energies, capacitances were
deduced. Cg, Cq, and CEDL are plotted as a function of n in Fig. 4b.
All the capacitances significantly depend on n: Cq increases and Cg

decreases with n, and both capacitances saturate to constant values at
n ? 4. This saturation behaviour corresponds to the fact that the
electric field is screened by the charge distributed within 3–4
layers29,30 in FLG. Note that the charge distribution over 3–4 layers
in FLG significantly reduces Cg because the effective EDL thickness
expands from d to , d 1 at; a is on the order of unity and determined
by the effective charge distribution. Therefore, even if an ionic liquid
with extremely thin d were used, Cg could not be increased due to the
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additional EDL thickness of at (see Supplementary Fig. S4 online).
Although layered material is considered to be the most suitable for
use with an ionic liquid gate, the effect of decreasing Cg must be taken
into account.

In conclusion, we have clarified the microscopic principles deter-
mining the capacitance of n-layer graphene by systematic study. The
carrier distribution and the band structure in the electrodes of a
capacitor define Cg and Cq, respectively, both of which contribute
to the total capacitance. This study demonstrates that we may not in
principle achieve the high-density carrier accumulation required for
EF to reach the van Hove singularity even with ionic liquid gated
FLG. This result suggests that we need chemical doping6,31,32 or band
control9 to bring the van Hove singularity close to the Fermi energy.
Our finding for EDL capacitor may establish a nanotechnological
guideline to improve ultrathin capacitors for charge doping, energy
storage, and electric power supply.

Methods
FLGs were prepared on a SiO2/highly doped Si substrate by the micromechanical
cleavage of Kish graphite (Covalent Materials Co.). The SiO2 was 300 nm thick and its
surface was coated with a hydrophobic hexamethyldisilazane (HMDS) layer33 to
improve the FET characteristics. The number of graphene layers was distinguished by
the contrast of the optical microscope image16,21–24, atomic force microscopy (AFM) and
Raman spectroscopy34–37 (see Supplementary Fig. S1 online). As described in the main
text, we only used uniform graphene layers without any overlaps of different layers,
wrinkles and folds in order to obtain a reliable n dependence. FLG devices for two-
terminal transport measurement were fabricated by photolithography and the vacuum
evaporation of metal (Cr 5 nm/Au 50 nm) and insulator (LiF 30 nm) to passivate the
electrodes. FLG devices with a Hall bar structure were prepared using the electron beam
lithography and oxygen plasma etching. FLG devices for capacitance measurement were
coated with 800 nm thick photoresist (Tokyo Oka, TSMR8900) instead of LiF, followed
by photolithography to open a window on the graphene layer. All the measurements
were carried out in Ar at room temperature. The transport property was measured with
a semiconductor device analyser (Agilent B1500A). We evaluated the conductivity from
the slope of I – V curves measured at a drain voltage of 61 mV. Except for the transport
measurement using a Hall bar structure, a gel of bmim[PF6] was used as the top gate
dielectric (preparation details described elsewhere38). The geometrical capacitance of
this ionic liquid was estimated to be 9.7 mF/cm2 by extrapolating the measured capa-
citance at 20 Hz – 100 kHz to 0 Hz. This value corresponds to d 5 0.6 nm, assuming
eIL 5 7 15. The capacitance measurement was carried out with a precision LCR meter
(Agilent E4980A) applying an AC voltage of 10 mV at 500 Hz and superimposed DC
voltage Vtg from 21 to 1 V. Only the FLG devices with a Hall bar structure were
measured by applying Vtg with an electrolyte LiClO4/PEO. The mixing molar ratio of
LiClO4/PEO is 1/20. The geometrical capacitance of this electrolyte is reported to be
15 mF/cm2 39, which is of the same order as that in bmim[PF6].
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