117 research outputs found

    Regulation of neutrophil senescence by microRNAs

    Get PDF
    Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease

    Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs(miRNAs) are important cellular components and their dysfunction is associated with various diseases. Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases. Although several miRNAs are reported to be associated with AMI, more novel miRNAs are needed to further investigate and improve certainty</p> <p>Methods</p> <p>We applied a well-established acute myocardial infarction rat model and performed miRNAs microarray experiments upon the myocardium tissue of rats with AMI and under sham control. We identified the differentially expressed miRNAs and analyzed the function of miRNA targets, transcription factors, and host genes based on bioinformatics.</p> <p>Results</p> <p>As a result, the levels of expression of seventeen miRNAs significantly deregulated, of which four miRNAs were further validated by qRT-PCR. In addition, we observed that the transcription factors, targets, and host genes of these deregulated miRNAs are enriched in cardiovascular-related functions.</p> <p>Conclusion</p> <p>We found that the miRNAs expression level altered in rats with AMI and differentially expressed miRNAs may be novel biomarkers of AMI.</p

    Anti-apoptotic function of Xbp1 as an IL-3 signaling molecule in hematopoietic cells

    Get PDF
    Cytokine signaling is critical for proliferation, survival and differentiation of hematopoietic cell, and interleukin-3 (IL-3) is required for maintenance of many hematopoietic cell lines, such as BaF3. We have isolated apoptosis-resistant clones of BaF3 using retroviral insertional mutagenesis and the Xbp1 locus was identified as a retroviral integration site. Expression and splicing of the Xbp1 transcript was conserved in the resistant clone but was promptly disappeared on IL-3 withdrawal in parental BaF3. IL-3 stimulation of BaF3 cells enhanced Xbp1 promoter activity and induced phosphorylation of the endoplasmic reticulum stress sensor protein IRE1, resulting in the increase in Xbp1S that activates unfolded protein response. When downstream signaling from IL-3 was blocked by LY294002 and/or dn-Stat5, Xbp1 expression was downregulated and IRE1 phosphorylation was suppressed. Inhibition of IL-3 signaling as well as knockdown of Xbp1-induced apoptosis in BaF3 cells. In contrast, constitutive expression of Xbp1S protected BaF3 from apoptosis during IL-3 depletion. However, cell cycle arrest at the G1 stage was observed in BaF3 and myeloid differentiation was induced in IL-3-dependent 32Dcl3 cells. Expression of apoptosis-, cell cycle- and differentiation-related genes was modulated by Xbp1S expression. These results indicate that the proper transcriptional and splicing regulation of Xbp1 by IL-3 signaling is important in homeostasis of hematopoietic cells

    Differential Expression Profile and Genetic Variants of MicroRNAs Sequences in Breast Cancer Patients

    Get PDF
    The technology available for cancer diagnosis and prognosis is not yet satisfactory at the molecular level, and requires further improvements. Micro RNAs (miRNAs) have been recently reported as useful biomarkers in diseases including cancer. We performed a miRNA expression profiling study using peripheral blood from breast cancer patients to detect and identify characteristic patterns. A total of 100 breast cancer patients and 89 healthy patients were recruited for miRNA genotyping and expression profiling. We found that hs-miR-196a2 in premenopausal patients, and hs-miR-499, hs-miR-146a and hs-miR-196a2 in postmenopausal patients, may discriminate breast cancer patients from healthy individuals. In addition, we found a significant association between two microRNA polymorphisms (hs-miR-196a2 and hs-miR-499) and breast cancer risk. However, no significant association between the hs-miR-146a gene and breast cancer risk was found. In summary, the study demonstrates that peripheral blood miRNAs and their expression and genotypic profiles can be developed as biomarkers for early diagnosis and prognosis of breast cancer

    Mammalian microRNAs predominantly act to decrease target mRNA levels

    Get PDF
    MicroRNAs (miRNAs) are endogenous ~22-nucleotide RNAs that mediate important gene-regulatory events by pairing to the mRNAs of protein-coding genes to direct their repression. Repression of these regulatory targets leads to decreased translational efficiency and/or decreased mRNA levels, but the relative contributions of these two outcomes have been largely unknown, particularly for endogenous targets expressed at low-to-moderate levels. Here, we use ribosome profiling to measure the overall effects on protein production and compare these to simultaneously measured effects on mRNA levels. For both ectopic and endogenous miRNA regulatory interactions, lowered mRNA levels account for most (≥84%) of the decreased protein production. These results show that changes in mRNA levels closely reflect the impact of miRNAs on gene expression and indicate that destabilization of target mRNAs is the predominant reason for reduced protein output.National Institutes of Health (U.S.

    MiR-223 Suppresses Cell Proliferation by Targeting IGF-1R

    Get PDF
    To study the roles of microRNA-223 (miR-223) in regulation of cell growth, we established a miR-223 over-expression model in HeLa cells infected with miR-223 by Lentivirus pLL3.7 system. We observed in this model that miR-223 significantly suppressed the proliferation, growth rate, colony formation of HeLa cells in vitro, and in vivo tumorigenicity or tumor formation in nude mice. To investigate the mechanisms involved, we scanned and examined the potential and putative target molecules of miR-223 by informatics, quantitative PCR and Western blot, and found that insulin-like growth factor-1 receptor (IGF-1R) was the functional target of miR-223 inhibition of cell proliferation. Targeting IGF-1R by miR-223 was not only seen in HeLa cells, but also in leukemia and hepatoma cells. The downstream pathway, Akt/mTOR/p70S6K, to which the signal was mediated by IGF-1R, was inhibited as well. The relative luciferase activity of the reporter containing wild-type 3′UTR(3′untranslated region) of IGF-1R was significantly suppressed, but the mutant not. Silence of IGF-1R expression by vector-based short hairpin RNA resulted in the similar inhibition with miR-223. Contrarily, rescued IGF-1R expression in the cells that over-expressed miR-223, reversed the inhibition caused by miR-223 via introducing IGF-1R cDNA that didn't contain the 3′UTR. Meanwhile, we also noted that miR-223 targeted Rasa1, but the downstream molecules mediated by Rasa1 was neither targeted nor regulated. Therefore we believed that IGF-1R was the functional target for miR-223 suppression of cell proliferation and its downstream PI3K/Akt/mTOR/p70S6K pathway suppressed by miR-223 was by targeting IGF-1R

    Single-cell RNA-sequencing resolves self-antigen expression during mTEC development

    Get PDF
    The crucial capability of T cells for discrimination between self and non-self peptides is based on negative selection of developing thymocytes by medullary thymic epithelial cells (mTECs). The mTECs purge autoreactive T cells by expression of cell-type specific genes referred to as tissue-restricted antigens (TRAs). Although the autoimmune regulator (AIRE) protein is known to promote the expression of a subset of TRAs, its mechanism of action is still not fully understood. The expression of TRAs that are not under the control of AIRE also needs further characterization. Furthermore, expression patterns of TRA genes have been suggested to change over the course of mTEC development. Herein we have used single-cell RNA-sequencing to resolve patterns of TRA expression during mTEC development. Our data indicated that mTEC development consists of three distinct stages, correlating with previously described jTEC, mTEChi and mTEClo phenotypes. For each subpopulation, we have identified marker genes useful in future studies. Aire-induced TRAs were switched on during jTEC-mTEC transition and were expressed in genomic clusters, while otherwise the subsets expressed largely overlapping sets of TRAs. Moreover, population-level analysis of TRA expression frequencies suggested that such differences might not be necessary to achieve efficient thymocyte selection.RM is supported by a PhD Fellowship from the Fundação para a Ciência e Tecnologia, Portugal (SFRH/ BD/51950/2012). XZ is supported by an Advanced Postdoc Mobility Fellowship from the Swiss National Science Foundation (SNSF, grant number P300P2_151352). Part of the work was performed during XZ’s visit to the Simons Institute for the Theory of Computing. TL is supported by the Academy of Finland (Decision 311081). The authors would like to thank Bee Ling Ng and the staff of the Cytometry Core Facility, and Stephan Lorenz and the staff of the Single Cell Genomics Core Facility for their contribution. Mark Lynch is acknowledged for technical assistance with the Fluidigm C1 platform. Mike Stubbington and Kylie James are acknowledged for revising the language of the manuscript. We thank Sarah Teichmann for help and discussions regarding the manuscript.info:eu-repo/semantics/publishedVersio

    Serum MicroRNAs as Biomarkers for Hepatocellular Carcinoma in Chinese Patients with Chronic Hepatitis B Virus Infection

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) have been shown to anticipate great cancer diagnostic potential. Recently, circulating miRNAs have been reported as promising biomarkers for various pathologic conditions. The objective of this study was to investigate the potential of serum miRNAs as novel biomarkers for hepatocellular carcinoma (HCC). METHODOLOGY/PRINCIPAL FINDINGS: This study was divided into four phases: (I) Ten candidate serum miRNAs were detected by using real-time RT-PCR, corresponding 10 HCC patients with chronic hepatitis B virus (HBV) infection and 10 age- and sex-matched healthy subjects. (II) Marker validation by real-time RT-PCR on HBV patients with (n = 48) or without HCC (n = 48), and healthy subjects (n = 24). (III) Marker detection by real-time RT-PCR in sera from another 14 HCC patients before and 1 month after surgical resection. (IV) We examined the correlation between the expressions of candidate serum miRNAs with clinical parameters of HCC patients. Although miR-222, miR-223 or miR-21 were significantly up- or down-regulated between HCC patients and healthy controls, no significant difference was observed in the levels of these miRNAs between HBV patients without and with HCC. MiR-122 in serum was significantly higher in HCC patients than healthy controls (p<0.001). More importantly, it was found that the levels of miR-122 were significantly reduced in the post-operative serum samples when compared to the pre-operative samples. Although serum miR-122 was also elevated in HBV patients with HCC comparing with those without HCC, the difference was at the border line (p = 0.043). CONCLUSIONS/SIGNIFICANCE: Our results suggest that serum miR-122 might serve as a novel and potential noninvasive biomarker for detection of HCC in healthy subjects, moreover, it might serve as a novel biomarker for liver injury but not specifically for detection of HCC in chronic HBV infection patients

    The Development of Mouse APECED Models Provides New Insight into the Role of AIRE in Immune Regulation

    Get PDF
    Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a defect in a single gene called AIRE (autoimmune regulator). Characteristics of this disease include a variable combination of autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-knockout mice has provided an invaluable model for the study of this disease. The aim of this review is to briefly highlight the strides made in APECED research using these transgenic murine models, with a focus on known roles of Aire in autoimmunity. The findings thus far are compelling and prompt additional areas of study which are discussed
    corecore