40 research outputs found

    Evolutionary constraints on the planet-hosting subgiant ε Reticulum from its white dwarf companion

    Get PDF
    The planet-hosting and Sirius-type binary system εReticulum is examined from the perspective of its more evolved white dwarf secondary. The stellar parameters are determined from a combination of Balmer line spectroscopy, gravitational redshift and solid angle. These three methods conspire to yield the most accurate physical description of the companion to date: Teff= 15310 ± 350K and M= 0.60 ± 0.02M⊙. Post-main-sequence mass-loss indicates that the current binary separation has increased by a factor of 1.6 from its primordial state when the current primary was forming its planet(s), implying a0≥ 150 au and constraining stable planets to within 15-20au for a binary eccentricity of e= 0.5. Almost 80 years have passed since the first detection of the stellar companion, and marginal orbital motion may be apparent in the binary, suggesting a near edge-on configuration with i≳ 70°, albeit with substantial uncertainty. If correct, and all known bodies are coplanar, the mass of the planet HD27442b is bound between 1.6 and 1.7 MJ. A search for photospheric metals in the DA white dwarf yields no detections, and hence there is no clear signature of an extant planetary system orbiting the previously more massive secondary. However, if the white dwarf mass derived via spectral fitting is correct, its evolution could have been influenced by interactions with inner planets during the asymptotic giant branch. Based on the frequency of giant planets and circumstellar debris as a function of stellar mass, it is unlikely that the primordial primary would be void of planets, given at least one orbiting its less massive sibling

    Fundamental Physics from Observations of White Dwarf Stars

    Get PDF
    Variation in fundamental constants provide an important test of theories of grand unification. Potentially, white dwarf spectra allow us to directly observe variation in fundamental constants at locations of high gravitational potential. We study hot, metal polluted white dwarf stars, combining far-UV spectroscopic observations, atomic physics, atmospheric modelling and fundamental physics, in the search for variation in the fine structure constant. This registers as small but measurable shifts in the observed wavelengths of highly ionized Fe and Ni lines when compared to laboratory wavelengths. Measurements of these shifts were performed by Berengut et al (2013) using high-resolution STIS spectra of G191-B2B, demonstrating the validity of the method. We have extended this work by; (a) using new (high precision) laboratory wavelengths, (b) refining the analysis methodology (incorporating robust techniques from previous studies towards quasars), and (c) enlarging the sample of white dwarf spectra. A successful detection would be the first direct measurement of a gravitational field effect on a bare constant of nature. We describe our approach and present preliminary results.Leverhulme Trus

    Constraining the magnetic field on white dwarf surfaces; Zeeman effects and fine structure constant variation

    No full text
    ABSTRACT White dwarf (WD) atmospheres are subjected to gravitational potentials around 105 times larger than occur on Earth. They provide a unique environment in which to search for any possible variation in fundamental physics in the presence of strong gravitational fields. However, a sufficiently strong magnetic field will alter absorption line profiles and introduce additional uncertainties in measurements of the fine structure constant. Estimating the magnetic field strength is thus essential in this context. Here, we model the absorption profiles of a large number of atomic transitions in the WD photosphere, including first-order Zeeman effects in the line profiles, varying the magnetic field as a free parameter. We apply the method to a high signal-to-noise, high-resolution, far-ultraviolet Hubble Space Telescope/Space Telescope Imaging Spectrograph spectrum of the WD G191−B2B. The method yields a sensitive upper limit on its magnetic field of B &amp;lt; 2300 G at the 3σ level. Using this upper limit, we find that the potential impact of quadratic Zeeman shifts on measurements of the fine structure constant in G191−B2B is 4 orders of magnitude below laboratory wavelength uncertainties.</jats:p

    The Secrets in the Spectra

    No full text

    Still Pretty Hot for a Fading Old Star!

    No full text

    Leaping into Space

    No full text

    Extreme and Far Ultraviolet Astronomy from Voyagers 1 and 2

    No full text

    Odd Couples

    No full text
    corecore