125 research outputs found

    The Development of Mouse APECED Models Provides New Insight into the Role of AIRE in Immune Regulation

    Get PDF
    Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a defect in a single gene called AIRE (autoimmune regulator). Characteristics of this disease include a variable combination of autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-knockout mice has provided an invaluable model for the study of this disease. The aim of this review is to briefly highlight the strides made in APECED research using these transgenic murine models, with a focus on known roles of Aire in autoimmunity. The findings thus far are compelling and prompt additional areas of study which are discussed

    ADAM2 Interactions with Mouse Eggs and Cell Lines Expressing α4/α9 (ITGA4/ITGA9) Integrins: Implications for Integrin-Based Adhesion and Fertilization

    Get PDF
    Integrins are heterodimeric cell adhesion molecules, with 18 α (ITGA) and eight ÎČ (ITGB) subunits forming 24 heterodimers classified into five families. Certain integrins, especially the α(4)/α(9) (ITGA4/ITGA9) family, interact with members of the ADAM (a disintegrin and metalloprotease) family. ADAM2 is among the better characterized and also of interest because of its role in sperm function. Having shown that ITGA9 on mouse eggs participates in mouse sperm-egg interactions, we sought to characterize ITGA4/ITGA9-ADAM2 interactions.An anti-ÎČ(1)/ITGB1 function-blocking antibody that reduces sperm-egg binding significantly inhibited ADAM2 binding to mouse eggs. Analysis of integrin subunit expression indicates that mouse eggs could express at least ten different integrins, five in the RGD-binding family, two in the laminin-binding family, two in the collagen-binding family, and ITGA9-ITGB1. Adhesion assays to characterize ADAM2 interactions with ITGA4/ITGA9 family members produced the surprising result that RPMI 8866 cell adhesion to ADAM2 was inhibited by an anti-ITGA9 antibody, noteworthy because ITGA9 has only been reported to dimerize with ITGB1, and RPMI 8866 cells lack detectable ITGB1. Antibody and siRNA studies demonstrate that ITGB7 is the ÎČ subunit contributing to RPMI 8866 adhesion to ADAM2.These data indicate that a novel integrin α-ÎČ combination, ITGA9-ITGB7 (α(9)ÎČ(7)), in RPMI 8866 cells functions as a binding partner for ADAM2. ITGA9 had previously only been reported to dimerize with ITGB1. Although ITGA9-ITGB7 is unlikely to be a widely expressed integrin and appears to be the result of "compensatory dimerization" occurring in the context of little/no ITGB1 expression, the data indicate that ITGA9-ITGB7 functions as an ADAM binding partner in certain cellular contexts, with implications for mammalian fertilization and integrin function

    Climate change and freshwater zooplankton: what does it boil down to?

    Get PDF
    Recently, major advances in the climate–zooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of ecology is of particular applicability in climate change research owing to the inherently predictive nature of this field. In the future, ecologists should expand their research on species beyond daphnids, should address questions as to how different intrinsic and extrinsic drivers interact, should move beyond correlative approaches toward more mechanistic explanations, and last but not least, should facilitate transfer of biological data both across space and time

    Effects of second-generation and indoor sports surfaces on knee joint kinetics and kinematics during 45° and 180° cutting manoeuvres, and exploration using statistical parametric mapping and Bayesian analyses

    Get PDF
    Purpose: The aim of the current investigation was to examine the influence of second generation (2G) and indoor surfaces on knee joint kinetics, kinematics, frictional and muscle force parameters during 45° and 180° change of direction movements using statistical parametric mapping (SPM) and Bayesian analyses. Methods: Twenty male participants performed 45° and 180° change of direction movements on 2G and indoor surfaces. Lower limb kinematics were collected using an eight-camera motion capture system and ground reaction forces were quantified using an embedded force platform. ACL, patellar tendon and patellofemoral loading was examined via a musculoskeletal modelling approaches and the frictional properties of the surfaces were examined using ground reaction force information. Differences between surfaces were examined using SPM and Bayesian analyses. Results: Both SPM and Bayesian analyses showed that ACL loading parameters were greater in the 2G condition in relation to the indoor surface. Conversely, SPM and Bayesian analyses confirmed that patellofemoral/ patellar tendon loading alongside the coefficient of friction and peak rotational moment were larger in the indoor condition compared to the 2G surface. Conclusions: This study indicates that the indoor surface may improve change of direction performance owing to enhanced friction at the shoe-surface interface but augment the risk from patellar tendon/ patellofemoral injuries; whereas the 2G condition may enhance the risk from ACL pathologies
    • 

    corecore